Abstract

Recent research has discovered disulfidptosis as a form of programmed cell death characterized by disulfide stress. However, its significance in clear cell renal cell carcinoma (ccRCC) remains unclear. To investigate this, data from The Cancer Genome Atlas were collected and used to identify ccRCC subgroups. Unsupervised clustering was employed to determine ccRCC heterogeneity. The mutation landscape and immune microenvironment of the subgroups were analyzed. The Disulfidptosis-Related Score was calculated using the LASSO-penalized Cox regression algorithm. The E-MATB-1980 cohort was used to validate the signature. The role of SLC7A11 in ccRCC metastasis was explored using western blotting and Transwell assays. Disulfidptosis-related genes are commonly downregulated in cancers and are linked to hypermethylation and copy number variation. The study revealed that ccRCC is divided into two sub-clusters: the disulfidptosis-desert sub-cluster, which is associated with a poor prognosis, a higher mutation frequency, and an immunosuppressive microenvironment. A 14-gene prognostic model was developed using differentially expressed genes and was validated in the E-MATB-1980 cohort. The low-risk group demonstrated longer overall and disease-free survival and responded better to targeted immunotherapy. Results from in vitro experiments identified SLC7A11 as a key participant in ccRCC metastasis.