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INTRODUCTION 
 

Cancer is a leading cause of death worldwide, accounting 

for approximately 65% of all deaths [1]. As the human 

lifespan increases, the incidence and mortality of cancer 

also increase. Renal cell carcinoma (RCC) is a common 

malignancy of the genitourinary system. Clear cell RCC 

(ccRCC) accounts for approximately 75% of all RCC 

cases and is an aggressive subtype [2]. At the time of 
diagnosis, 20-30% of patients already have metastases. 

Even after surgical removal of the tumor, nearly 30% of 

the patients experience recurrence and metastasis [3, 4]. 

Furthermore, advanced metastatic RCC shows a limited 

response to radiotherapy and chemotherapy, resulting in a 

restricted range of clinical treatment options and poor 

prognosis [5–7]. The 5-year survival rate of patients  

with metastatic renal cancer is less than 5% [8]. The 

TNM staging system is commonly used to predict  

kidney cancer prognosis. However, its predictive ability 

is limited because the survival rate can vary significantly 

among patients with the same stage of the disease [9]. 
Several prognostic models are available for predicting the 

outcomes of ccRCC. Bian et al. developed a predictive 

model for recurrence-free survival (RFS) in patients 
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ABSTRACT 
 

Recent research has discovered disulfidptosis as a form of programmed cell death characterized by disulfide 
stress. However, its significance in clear cell renal cell carcinoma (ccRCC) remains unclear. To investigate this, 
data from The Cancer Genome Atlas were collected and used to identify ccRCC subgroups. Unsupervised 
clustering was employed to determine ccRCC heterogeneity. The mutation landscape and immune 
microenvironment of the subgroups were analyzed. The Disulfidptosis-Related Score was calculated using the 
LASSO-penalized Cox regression algorithm. The E-MATB-1980 cohort was used to validate the signature. The 
role of SLC7A11 in ccRCC metastasis was explored using western blotting and Transwell assays. Disulfidptosis-
related genes are commonly downregulated in cancers and are linked to hypermethylation and copy number 
variation. The study revealed that ccRCC is divided into two sub-clusters: the disulfidptosis-desert sub-cluster, 
which is associated with a poor prognosis, a higher mutation frequency, and an immunosuppressive 
microenvironment. A 14-gene prognostic model was developed using differentially expressed genes and was 
validated in the E-MATB-1980 cohort. The low-risk group demonstrated longer overall and disease-free survival 
and responded better to targeted immunotherapy. Results from in vitro experiments identified SLC7A11 as a 
key participant in ccRCC metastasis. 
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using conventional clinical variables, such as prothrombin 

time, albumin/globulin ratio, platelet count, sex, and 

fibrinogen levels [10]. Meng et al. investigated the 

prognostic value of cell division cycle-related proteins 

[11] in accurately predicting RFS. However, no study has 

explored the role of disulfide-related genes in ccRCC 

prognosis. 

 

Disulfidptosis is a recently discovered form of cell 

death that is distinct from cuprotosis, apoptosis, 

ferroptosis, pyroptosis, and necroptosis [12]. It is 

characterized by abnormal buildup of intracellular 

disulfides, particularly cystine, which causes disulfide 

stress and exerts significant toxicity on cells [13, 14].  

In cancer cells with abnormal SLC7A11 expression, 

high rates of cystine uptake and reduction to cysteine, 

combined with glucose starvation, deplete the NADPH 

pool. This depletion results in a massive accumulation 

of intracellular disulfide molecules. Anomalous 

accumulation of intracellular disulfides leads to aberrant 

disulfide bonds in actin cytoskeleton proteins and the 

collapse of F-actin in an SLC7A11-dependent manner, 

ultimately resulting in rapid cell death. Alterations in 

the cytoskeleton of plants and animals play an active 

role in initiating and regulating PCD [15, 16]. Inhibition 

of glucose transporters to induce disulfidoptosis may be 

an effective therapeutic strategy for treating SLC7A11 

high tumors, which frequently occur in human cancers 

[12, 17]. Therefore, investigating the mechanism of 

disulfidoptosis in tumors is important to induce cancer 

cell death and tumor killing. 

 

This study characterized disulfidptosis-related genes 

using pan-cancer analysis and stratified patients  

with ccRCC by integrating multiomics data. The  

study included prognostic, enrichment, gene mutation, 

immune infiltration, and single-cell analyses. A reliable 

risk stratification model was constructed to predict the 

prognosis and therapeutic response of patients with 

ccRCC. SLC7A11 is closely associated with metastasis 

and may serve as a therapeutic target in ccRCC. It is an 

important prognostic model component gene. 

 

RESULTS 
 

Dysregulation and mutation of disulfidptosis-related 

genes in cancers 

 

Disulfidptosis has become an increasingly important 

focus of cancer research. Initially, we examined the 

expression patterns of disulfidptosis-related genes in 

various cancer types. As shown in Figure 1A, most 

disulfidoptosis genes were downregulated in multiple 

cancer types, including PDLIM1, TLN1, and MYH10 in 

lung squamous cell carcinoma (LUSC), MYL6 and 

DSTN in prostate adenocarcinoma (PRAD), and FLNA 

and ACTB in bladder cancer (BLCA). These results 

indicated that disulfidptosis is suppressed in cancer 

cells. Therefore, drugs that can induce disulfidoptosis in 

cancer cells may enhance their therapeutic efficacy in 

tumor treatment. Furthermore, SLC7A11, IFN2, and 

MYH9 were significantly upregulated in kidney clear 

cell carcinoma (KIRC) and head and neck squamous 

cell carcinoma (HNSC). To gain a comprehensive 

understanding of the dysregulated expression of 

disulfidoptosis genes, we investigated copy number 

variation (CNV) and single-nucleotide variations (SNV) 

across various cancers (Figure 1B, 1C). Our findings 

indicated a significant correlation between CNV and 

gene expression in most cancers, particularly BRCA, 

COAD, LUSC, and OV. As shown in Figure 1C, 

heterozygous amplifications frequently appeared in 

ACTB, DSTN, and MYL6, whereas heterozygous 

deletions often occurred in CAPZB, FLNB, MYH10, 

and PDL1M1. The frequency of SNVs in genes 

associated with disulfidoptosis was analyzed. 94.76 Of 

the tested genes, 94.76% had at least one mutation site 

(Additional File 1, Supplementary Figure 2A). FLNA, 

FLNB, MYH9, and TLN1 displayed high mutation 

frequencies, with FLNA having the highest SNV  

rate (25%). Cancers with high SNV rates included 

UCEC, SKCM, STAD, and COAD (Supplementary 

Figure 2B). Methylation was found to have a negative 

correlation with gene expression. The expression of 

most disulfidoptosis genes, such as DSTN, FLNA, 

INF2, and PDL1M1, was negatively correlated with the 

methylation status (Figure 1D). This suggests that most 

disulfidoptosis genes are hypermethylated in various 

cancers. The hypermethylated genes SLC7A11 and 

CD2AP were primarily associated with better prognosis 

in cancer, whereas the hypomethylated gene MYL6 was 

predominantly associated with poor prognosis in PCPG 

(Supplementary Figure 2C). Moreover, we conducted  

a Protein-Protein Interaction (PPI) analysis using the 

GeneMANIA website and found that MYH9, ACTB, 

and PDLIM1 were hub genes in the interaction network 

(Figure 1E). 

 
Establishment of two clusters by clustering analysis 

of disulfidptosis genes in ccRCC 

 
There was a notable difference in the expression of  

the disulfidoptosis genes between ccRCC and normal 

tissues. However, the implications of these signatures in 

cancers, particularly ccRCC, are not yet fully understood. 

Therefore, we investigated the characteristics of disulfide 

pathogenesis-related genes in ccRCC. An unsupervised 

clustering method was used to classify TCGA ccRCC 

samples into distinct subtypes based on the expression 

levels of the disulfidoptosis-related genes. The optimal 

number of clusters (K) for the analysis was determined 

using the K value derived from the cumulative 
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distribution function (CDF) with a minimal slope of 

decline, ensuring the highest consistency. The TCGA-

KIRC dataset was optimally categorized into two 

subtypes, disulfidoptosis-cluster 1 (DC1) and cluster 2 

(DC2), with k=2 determined to be the best classification 

number (Figure 2A–2D). Patients with the DC2 subtype 

exhibited significantly shorter overall survival (OS) and 

disease-free survival (DFS) than those with the DC1 

subtype (Figure 2E, 2F). Furthermore, we analyzed the 

expression levels of disulfidoptosis-related genes in the 

ccRCC subtypes. The DC2 subtype, characterized by the 

depletion of disulfidoptosis-related genes, showed lower 

expression levels of these genes than the DC1 subtype 

(Figure 2G). Downregulation of disulfidoptosis-related 

 

 
 

Figure 1. Dysregulation, mutation, and methylation of disulfidptosis-related genes in cancers. (A) Expression of disulfidation-

related genes in multiple cancerous and normal tissues. (B) Bubble chart showing the correlation between CNV and the expression of 
disulfidptosis-related genes. (C) Heterozygous and homozygous amplification/deletion of disulfide-related genes in multiple cancers.  
(D) Bubble chart showing the correlation between methylation of the 15 disulfide-related molecules and mRNA expression. (E) PPI network of 
15 disulfide-related genes. 
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genes in the DC2 subtype contributes to the 

suppression of disulfidoptosis, making it a prognostic 

factor associated with poor outcomes. 

 

Functional enrichment analysis of ccRCC subtypes 

 

This study analyzed differences in gene expression 

among disulfidoptosis subtypes and investigated the 

associated signaling pathways. Most signaling pathways 

in pan-cancer, including ACTB, FLNA, MYH9, 

MYH10, and TLN1, exhibited high activation levels in 

the epithelial-mesenchymal transition (EMT) pathway, 

but consistent inhibition of the cell cycle, DNA damage 

response, and hormone AR (Figure 3A). In renal  

cancer tissue, most disulfidoptosis molecules activated 

apoptosis, EMT, cell cycle, and RTK signaling pathways, 

 

 
 

Figure 2. Establishment of two clusters of disulfide-related genes in ccRCC. (A) Consensus matrix of the samples in TCGA-KIRC for k 
= 2. (B) Cluster numbers are determined by the lowest proportion of ambiguous clusters. (C) Cumulative distribution function curves, k = 2–5. 
(D) Principal component plot based on disulfide-related genes. (E, F) Survival analysis of overall survival (left) and disease-free survival (right) 
of the two subtypes in the TCGA-KIRC dataset. (G) Expression profiles of disulfide-related genes in the two subtypes. 
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but inhibited the PI3K/AKT, hormone ER, and hormone 

AR signaling pathways (Figure 3B). To further 

investigate the molecular differences between the DC1 

and DC2 subtypes and their potential implications,  

we examined the differentially expressed genes (DEGs) 

between these subgroups using the TCGA database 

(Figure 3C). We performed gene set enrichment analysis 

(GSEA) to identify enriched pathways associated with 

subtypes DC1 and DC2. The analysis revealed that  

the DC1 subtype was primarily enriched in pathways 

related to oxidative phosphorylation, KRAS signaling, 

xenobiotic metabolism, and fatty acid metabolism. In 

contrast, the DC2 subtype showed stronger correlations 

with pathways such as TGF Beta signaling, hedgehog 

signaling, Wnt β-catenin signaling, and angiogenesis 

(Figure 3D). These findings indicate that the two 

subtypes have different molecular characteristics and 

signaling pathways, which may contribute to their 

different prognoses in ccRCC. 

 

Comparison of tumor somatic mutations and CNVs 

in two subtypes 

 

To explore the characteristics of the two RCC subtypes 

comprehensively, we investigated the differential 

distribution of tumor somatic mutations between them. 

Our analysis revealed that the DC2 subtype had a higher 

frequency of gene mutations than did the DC1 subtype 

 

 
 

Figure 3. Analysis of disulfide-related signaling pathways. (A) Heatmap showing the correlation between the expression levels of 

15 disulfidoptosis-related molecules in important cancer signaling pathways. (B) Correlation between 15 disulfidation-related molecules 
in ccRCC and important cancer signaling pathways. The solid line represents activation and the dashed line represents inhibit ion.  
(C) Volcano plot of DEGs between the two clusters. (D) GSEA enrichment analysis of specific biological pathways in the two disulfidptosis 
phenotypes. 
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(Figure 4A, 4B). The graph illustrates the mutation 

frequencies of the top 20 mutated genes. In both 

subtypes, the most frequently mutated genes were VHL, 

PBRM1, TTN, SETD2, and BAP1. The DC2 subtype 

exhibited higher mutation frequencies in several genes 

compared to the DC1 subtype, including VHL (58.5% 

vs. 57.9%), PBRM1 (55.3% vs. 46.1%), TTN (22.3% 

vs. 19.1%), BAP1 (13.8% vs. 11.2%), and MUC16 

(9.6% vs. 4%). The difference in PBRM1 mutational 

frequency between the two subtypes was statistically 

significant (p < 0.05; Supplementary Table 1). The 

distribution of mutant allele tumor heterogeneity 

(MATH) scores between the two subtypes (Figure 4C) 

was consistent with this observation. Furthermore, 

differences in tumor mutation burden (TMB) were 

observed between the two groups (Figure 4D), 

suggesting an association between gene mutations and 

the ccRCC subtype phenotypes. 

 

Comparison of immune infiltration characteristics 

between subtypes 

 

The effectiveness of drug therapy is influenced not  

only by genomic mutations but also by the tumor 

immune microenvironment. Therefore, we examined the 

relationship between disulfidoptosis subtypes and the 

tumor microenvironment in a cohort of 518 patients 

from TCGA using the ESTIMATE and ssGSEA 

algorithms. Analysis using ESTIMATE revealed that the 

DC2 group had a higher tumor purity than the DC1 

group (Figure 5A). Furthermore, there was an inverse 

relationship between the stromal and ESTIMATE 

scores. Although the difference was not statistically 

significant, the immune score decreased in the DC2 

group. Moreover, the ssGSEA analysis revealed a 

significant decrease in the proportion of various immune 

cell types that have antitumorigenic properties in the 

DC2 group. These include adaptive immune cells, such 

as central memory CD8 T cells, effector memory CD4 T 

cells, effector memory CD8 T cells, memory B cells, 

regulatory T cells, type 1 T helper cells, and type 2 T 

helper cells, as well as innate immune cells, such as 

endothelial cells, eosinophils, mast cells, natural killer 

cells, natural killer T cells, and neutrophils (Figure  

5B). In contrast, the DC2 group exhibited significant 

enrichment of activated B cells, activated CD4 T cells, 

activated CD8 T cells, activated dendritic cells, and type 

17 T helper cells. We subsequently analyzed the tumor 

immune cycle-related signals among the subtypes of 

disulfidoptosis. The antitumor immune response requires 

successful completion of a series of sequential events 

collectively known as the cancer immune cycle. The 

results of this study suggest that the DC1 subtype has 
active pathways in steps 3, 5, and 6 (Figure 5B, bottom), 

supporting the significant role of disulfidoptosis in 

cancer infiltration. In addition, we analyzed immune-

related gene set scores and found that both Pan-F-TBRS 

and Wnt target gene sets had higher values for the DC1 

subtype (Figure 5C). These findings indicate that tumors 

in the DC2 group may create an immunosuppressive 

microenvironment, which hinders antitumor immunity, 

promotes tumor growth, and leads to a poorer prognosis. 

 

Construction of the DRS for patients with ccRCC 

 

The study confirmed the significance of disulfidptosis 

in regulating the tumor immune microenvironment and 

predicting survival in patients with renal cancer. A 

scoring model, known as the disulfidation-related score 

(DRS), was developed based on the DEGs between the 

DC1 and DC2 subtypes. Initially, a univariate Cox 

regression analysis of the 1102 DEGs was conducted. 

Subsequently, 278 genes with a p < 0.01 were included 

for further multivariate Cox regression analysis. A DRS 

was constructed using a LASSO regression analysis of 

33 selected molecules from multivariate Cox regression. 

The coefficients obtained and the expression levels  

of each variable were used to construct the DRS, as 

shown in Supplementary Figure 3. A comparison of 

DRS levels between the two subtypes revealed higher 

DRS values in DC2, as shown in Figure 6A. The DRS 

accurately predicted the renal cancer subtypes, as shown 

in Figure 6B, 6C, with an area under the ROC curves 

(AUC) of 0.775. The high-DRS group exhibited worse 

OS and DFS than the low-risk group in both cohorts, as 

shown in Figure 6D, 6E and Supplementary Figure 4A. 

The DRS model’s high sensitivity and specificity in 

predicting prognosis was further confirmed by the area 

under the Receiver operating characteristic (ROC) 

curves. The AUC scores were 0.76, 0.74, 0.75, and 0.80 

at 1, 3, 5, and 10 years, respectively, in the TCGA 

ccRCC cohort (Figure 6F). The prognostic model was 

validated in an external validation set, where the AUC 

values of the ROC curve at 3, 5, and 10 years were all 

above 0.7 (Supplementary Figure 4B), demonstrating 

the potential wide application of this prognostic model. 

 

Comparison of cell death-related prognostic 

signatures in ccRCC 

 

In recent years, many prognostic signatures based  

on gene expression have been reported due to the 

emergence of next-generation sequencing technologies. 

We evaluated the prognostic accuracy of the DRS 

compared with five other cell death-related signatures: 

ferroptosis, cuproptosis, immunogenic cell death, 

pyroptosis, and a composite of 12 combined PCD 

models. DRS outperformed the other five risk scores in 

predicting patient survival, as indicated by the higher 
AUCs. This difference in performance was significant 

for all four signatures (p < 0.05, Figure 7A–7E). 

Furthermore, we observed that patients in the high-DRS 
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Figure 4. Genomic alterations in disulfidptosis-related signatures. Genomic profiling of the 20 most frequently altered genes in the 
DC1 (A) and DC2 (B) groups. (C) Comparison of MATH score between the two ccRCC subtypes. (D) Comparison of the TMB levels between the 
two ccRCC subtypes. 
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group were more concentrated in the MoS1 category, 

which confers a worse prognosis, which is consistent 

with our findings. Conversely, patients with a low  

DRS were concentrated in the MoS2 category, which  

is associated with a more favorable prognosis. This 

finding was consistent with our results (Figure 7F). 

 

Nomogram establishment based on the multivariable 

Cox regression model 

 

Clinicopathological features, including age, sex, 

pathological TNM stage, pathological stage, and 

grade, were incorporated as independent prognostic 

factors in the univariate Cox analysis. The results 

showed that age, pathological TNM stage, pathological 

stage, grade, and DRS all had a p < 0.05, indicating 

their significant prognostic value (Figure 8A). These 

factors were included in the multivariate Cox  

model based on the findings of the univariate analysis 

(Figure 8B). Nomograms and calibration curves were 

constructed for the 1-, 3-, and 5-year predictions based 

on the independent prognostic factors identified using 

the multivariable Cox model (Figure 8C, 8D). The final 

predictors in the nomograms were DRS, pathologic  

M, and age, and the C-index was 0.7795, indicating 

the good discrimination ability of the nomogram 

prediction model. 

 

Disulfidptosis‐related score was a potential diagnostic 

biomarker for ccRCC 

 

To investigate the clinical utility of DRS, we compared 

the clinicopathological features of patients in the high- 

and low-DRS groups from the TCGA cohort. Chi-square 

 

 
 

Figure 5. Variations in TME in the two disulfidptosis phenotypes. (A) The result of estimation between the two disulfidoptosis 

phenotypes from TCGA-KIRC datasets. ns, p > 0.05; ***p < 0.001, ****p < 0.0001. (B) The heatmap showing the frequency of TME-infiltrating 
cells and cancer immune cycle among the two disulfidoptosis phenotypes based on ssGSEA. (C) The Wilcox test was used to evaluate the 
TME-related scores of different disulfidoptosis patterns. ns, p > 0.05; ***p < 0.001, ****p < 0.0001. 
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test revealed that the high-DRS group had poorer tissue 

type, grade, and TNM staging than the low-DRS group, 

indicating an association between high DRS and more 

malignant ccRCC (Figure 9A). To improve the accuracy 

of ccRCC diagnosis, we evaluated the potential of the 

DRS as a specific and sensitive biomarker for early 

detection. We conducted ROC analysis to evaluate the 

diagnostic performance of DRS. As shown in Figure 

9B–9F, the DRS outperformed the other five models in 

discriminating ccRCC from normal tissue samples. 

Statistical analysis revealed that the differences between 

DRS and the three comparative models were significant 

(p < 0.05, DeLong’s test), indicating the superior 

diagnostic capability of the proposed signature. 

 

Drug sensitivity analysis and DRS 

 

A subset of tumor cells, known as tumor-initiating  

cells (TIC) or cancer stem cells (CSC), possesses  

stem cell-like properties that enable them to evade 

immune surveillance and exhibit resistance to current 

therapeutic interventions [18]. The study also measured 

the association between DRS and the RNA stem score 

(RNAss) [19]. Scatter plots and regression analyses 

revealed a significant positive correlation between the 

DRS and RNAss (Spearman correlation coefficient  

R = 0.24; p = 8.9e-08) (Figure 10A). Furthermore, DRS 

was strongly associated with cancer stem cell markers 

[20], including CD19 (R = 0.32; p < 1.9e-13) (Figure 

10B), CD44 (R = 0.21; p = 1.4e-06) (Figure 10C),  

and SOX2 (R = 0.29; p = 2.2e-11) (Figure 10D).  

Drug sensitivity analysis using the GDSC database  

revealed distinct responses between the high- and low-

DRS groups. The low-DRS group exhibited higher  

sensitivity to axitinib, imatinib, pazopanib, and cisplatin,  

whereas the high-DRS group displayed sensitivity to 

temsirolimus and gefitinib (Figure 10E). Furthermore, 

the potential predictive role of DRS in targeted therapy 

efficacy was explored in patients with ccRCC treated 

with everolimus in the RCC-Braun_2020 cohort [21]. 

Kaplan–Meier analysis showed that the low-DRS  

group had a significantly better overall progression- 

free survival (PFS) than the high-DRS group (log-rank  

test, p < 0.05; Figure 10F). Although not statistically 

 

 
 

Figure 6. Clinical significance of DRS. (A) Boxplots show DRS at two levels of disulfidptosis. ****p < 0.0001. (B) ROC curve analysis of the 
predictive value of DRS for disulfidptosis phenotypes. (C) Alluvial plot showing the association between DRS and disulfidoptosis phenotypes. 
(D, E) Survival analysis of overall survival (left) and disease-free survival (right) of the two DRS groups in the TCGA-KIRC dataset. (F) Time-
dependent ROC analysis of the predictive value of DRS for the overall survival of patients at 1, 3, 5, and 10 years. 
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significant, the KM curve for OS also suggested better 

clinical prognosis in the low-risk group (Figure 10G). 

Moreover, patients with ccRCC who responded to 

everolimus had significantly lower DRS scores than 

non-responders (Figure 10H). 

 

Renal cancer cells with high DRS display pronounced 

biological traits related to the malignancy 

 

To validate the predictive utility of the DRS for 

ccRCC, additional analyses were performed using 

single-cell transcriptomic data from seven ccRCC 

samples (Figure 11A). This study aimed to determine 

whether DRS could delineate discrete biological 

features at the single-cell level. After quality control, 

normalization, integration, and principal component 

analysis (PCA), 11 clusters comprising 34,132 cells 

were identified (Figure 11B). Sub-cluster annotation 

revealed six cell types based on the cell marker 

website. DRS activity was quantified across B cells, 

endothelial cells, macrophages, monocytes, tumor cells, 

and T cells (Figure 11A, 11B) to assess the  

subtype-specific DRS profiles. Gene set variation 

analysis (GSVA) analysis of single-cell sequencing 

data revealed that tumor cells with high DRS  

exhibited increased activity of pathways associated 

with malignant phenotypes, including TGF-signaling, 

EMT, inflammatory response, KRAS signaling, Notch 

signaling, and Wnt/β-catenin signaling. In contrast, 

tumor cells with low DRS showed increased activity  

in metabolic pathways such as xenobiotic meta- 

bolism, fatty acid metabolism cholesterol homeostasis,  

heme metabolism, bile acid metabolism, oxidative 

phosphorylation, and glycolysis. Furthermore, they 

displayed elevated activity in immune pathways, 

including interferon alpha response, interferon gamma 

response, and complement signaling (Figure 11C).  

To investigate the communication patterns between 

tumor cells stratified by DRS status and other cell 

types, we used CellChat to identify ligand-receptor 

pairs and molecular interactions. We observed a 

specific cellular interaction between high-DRS tumor 

 

 
 

Figure 7. Outstanding performance of DRS compared to other cell death-related models. (A–E) AUC analysis of the DRS and other 
PCD-related models in the TCGA-KIRC cohort. (F) The alluvial plot shows the association between DRS and MoS subtypes. 
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cells and immune cells within the ccRCC micro-

environment. Specifically, in the MIF, MK, and SPP1 

signaling pathways, high-DRS tumor cells acted as key 

senders and influencers communicating with immune 

cells (Figure 11D). 

 

DRS predicts the response of ccRCC to 

immunotherapy 

 

This study investigated the predictive value of the  

DRS in anti-PD-1 therapy among patients with ccRCC 

treated with nivolumab from the RCC-Braun_2020 

cohort. Patients were categorized into high- and low-

DRS groups. The low-DRS group showed a more 

favorable prognosis after PD-L1 treatment (p < 0.05; 

Figure 12A, 12B) and was more likely to benefit from 

anti-PD-L1 immune checkpoint treatment (Wilcoxon 

test, p < 0.05; Figure 12C). The low-DRS group 

showed a more favorable prognosis after PD-L1 

treatment (p < 0.05; Figure 12A, 12B) and was more 

likely to benefit from anti-PD-L1 immune checkpoint 

treatment (Wilcoxon test, p < 0.05; Figure 12C). In 

 

 
 

Figure 8. Construction of a prognostic nomogram based on clinical features and DRS. (A, B) Analysis of DRS and other clinical 
characteristics of TCGA-KIRC patients based on univariate and multivariate Cox models. (C) Use of DRS and other clinical features of 
patients with ccRCC to construct a prognostic nomogram for the training cohort. (D) Calibration curve analysis validating the stability of the 
model (1 year: blue; 3 years: red; 5 years: green). 
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conclusion, these findings suggest a possible association 

between a low DRS and positive therapeutic outcomes 

in immunotherapy. 

 

Effects of SLC7A11 on proliferation, migration, and 

invasion of ccRCC cells 

 

Solute Carrier Family 7 member 11 (SLC7A11) is a 

crucial gene involved in disulfidoptosis and plays a  

key role in tumor development and progression  

[22–24]. However, the precise role of SLC7A11 in the 

development of cancer remains unclear. Differential 

expression analysis conducted on the TCGA-KIRC 

dataset revealed that SLC7A11 was significantly up-

regulated in tumor tissues compared to that in normal 

tissues (Supplementary Figure 5A). DEGs analysis  

was performed on the TCGA-KIRC cohort using the 

‘DESeq2’ package. The results indicated that 1032 

DEGs were differentially expressed between the high 

and low SLC7A11 groups of ccRCC based on the 

criteria of p < 0.05 and |log2FC|>1 (Supplementary 

Figure 5B). The biological role of SLC7A11 in ccRCC 

was elucidated by GSEA. Functional HALLMARK, 

KEGG, and GO terms associated with SLC7A11  

were analyzed. The enriched pathways are shown in 

Supplementary Figure 5C–5E. These results indicate 

that high expression of SLC7A11 is enriched in genes 

from proliferation- and metastasis-related pathways, 

including the E2F and EMT signaling pathways. 

Subsequently, in vitro experiments were performed to 

gain deeper insights into the impact of SLC7A11 on 

kidney cancer cell function. The three vectors for 

SLC7A11 siRNA knockdown were transfected into 

786-O cells. Transfection efficiency was verified by 

western blotting, and the results are presented in  

Figure 13A, 13B, which show excellent transfection 

 

 
 

Figure 9. Diagnostic value analysis of the DRS in ccRCC. (A) Pie charts showing the chi-square test of clinicopathological factors for DRS 
in ccRCC. (B–F) AUC analysis of the DRS and other PCD-related models for distinguishing ccRCC from normal RCC. p < 0.05 was considered 
statistically significant. 
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Figure 10. Associations between DRS and stemness index and clinical drug treatment responses. Correlation analysis of DRS with 

RNA stem score (A) and renal cancer stem cell markers (CD19, CD44, and SOX2) (B–D). Statistical significance was set at p < 0.05. (E) Boxplots 
of the estimated IC50 values of chemotherapeutic and targeted agents in the high- and low-DRS groups, including axitinib, imatinib, 
pazopanib, temsirolimus, cisplatin, and gefitinib. (F, G) Survival analysis for progression-free survival and overall survival of the two DRS 
groups in patients with ccRCC who were treated with everolimus from the RCC-Braun_2020 cohort. (H) Comparison of DRS of different 
patients with ccRCC in different remission states after targeted therapy in RCC-Braun_2020 cohort. (ns, p > 0.05; *p < 0.05). 
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Figure 11. Single-cell RNA-sequencing data analysis. (A) Plots of 7 patients, 11 cell clusters, 6 cell types and different DRS level using t-

SNE. (B) Marker gene heatmap of each cell subpopulation. (C) Gene set variation analysis of renal cancer cells with different levels of DRS.  
(D) Cellular interaction networks between renal cancer cells with different DRS levels and other cells in the MIF, MK, and SPP1 signaling 
pathways. 
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efficiency. Next, a Transwell chamber experiment  

was performed to verify the migration and invasion 

abilities (Figure 13). The migration, invasion, and 

proliferation abilities of 786-O cells were significantly 

reduced after SLC7A11 knockdown. The proliferation 

assay (Figure 13F) confirmed that SLC7A11 effectively 

affects the proliferation of ccRCC cells, showing  

that knockdown of SLC7A11 markedly reduces the 

proliferation ability of ccRCC cells in 786-O compared 

to that of negative cells. These findings suggest that 

SLC7A11 significantly affects the migration, invasion, 

and proliferation of renal cancer cells. 

 

DISCUSSION 
 

The current approach for classifying ccRCC relies 

primarily on its histopathological features. With the 

advancement of large-cohort cancer projects, including 

TCGA, CPTAC, and Gene Expression Omnibus  

(GEO), and the progress of bioinformatics algorithms, 

researchers can now access genomic heterogeneity. 

Previous studies have identified ccRCC subtypes through 

genomic profiling [25–28], which advances the potential 

for precise, personalized therapeutic interventions in the 

management of ccRCC. Disulfidptosis is a mechanism of 

cell death that is distinct from apoptosis, ferroptosis, 

pyroptosis, necroptosis, and cuprotosis. It is characterized 

by abnormal disulfide cross-linking of actin cytoskeletal 

proteins [12]. Mechanistically, glucose starvation leads to 

an insufficient supply of NADPH, which blocks cellular 

reduction of cysteine to cystine. Consequently, numerous 

disulfide bonds are formed between the actin molecules, 

inducing disulfide stress. The Rac/WAVE regulatory 

complex (WRC)-actin-related protein 2/3 (Arp2/3) 

signaling pathway is activated by disulfide stress,  

which ultimately induces cell death. Furthermore, studies  

have shown that the polymerization of disulfide bonds 

within mitochondria can affect tumor progression [29]. 

Although Gan et al. identified several disulfidation-

related genes, their expression characteristics and 

function in ccRCC remain unclear. Thus, we identified 

the main characteristics of disulfidoptosis in ccRCC, 

which can serve as a useful reference for guiding cancer 

treatment. 

 

This study presents a comprehensive analysis of 

disulfidoptosis-related genes using multiomics data 

from over 10,000 samples from 33 cancer types. These 

findings indicate a significant downregulation of 

disulfidoptosis genes in cancerous tissues compared to 

that in normal tissues. This downregulation is associated 

with hypermethylation events and copy number 

variations. Based on disulfidoptosis signatures, ccRCC 

can be classified into two subtypes: DC1 (disulfidoptosis-

cluster 1) and DC2 (disulfidoptosis-cluster 2). The  

DC2 subtype, characterized by its disulfidoptosis-desert 

phenotype, has a poor prognosis, with a higher TMB and 

MATH score, as well as reduced immune infiltration. 

The activation of disulfidoptosis has the potential  

to restructure tumor immunity within the ccRCC 

microenvironment by promoting antigen presentation. 

 
To accurately evaluate the disulfidoptosis pattern of 

individual patients, we applied a methodology known as 

the disulfidoptosis-related score (DRS), which considers 

the individual heterogeneity of disulfidoptosis status. 

Integrated analyses showed that the DRS was a strong 

and independent prognostic factor for ccRCC. 

 
To validate the robustness of DRS, we compared  

its performance with that of five previously published 

gene signatures based on programmed cell death-related 

genes. Comparative assessments demonstrated that the 

DRS had a superior prognostic ability compared to 

 

 
 

Figure 12. Relationship between DRS and immunotherapy. (A, B) Survival analysis for overall survival and progression-free survival of 
the two DRS groups in patients with ccRCC who were treated with nivolumab from the RCC-Braun_2020 cohort. (C) Comparison of DRS of 
different patients with ccRCC in different remission states after immunotherapy in RCC-Braun_2020 cohort. (ns, p > 0.05; *p < 0.05). 
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the other evaluated models. Although our model 

outperformed the five ccRCC models mentioned 

above, it may be too complex for clinical  

application. Therefore, future studies should focus on 

developing simplified gene signatures that maintain 

predictive accuracy while containing fewer genes. 

These streamlined models would balance precision and 

practicality, making them more suitable for widespread 

adoption in clinical settings. We related the DRS to  

the MoS classification established by Meng et al. and 

found that patients in the high-DRS group were more 

frequently classified as MoS1, whereas those in the 

low-DRS group were predominantly classified as MoS2 

and MoS3. The MoS1 classification is characterized 

by a higher tumor stage, elevated hypoxia scores, and 

a higher frequency of SETD2 mutations, which are 

associated with poor prognosis. This finding helps 

explain the molecular characteristics that contribute to 

the poor prognosis of patients in the high-DRS group. 

In contrast, the MoS2 classification is associated with 

 

 
 

Figure 13. Effect of SLC7A11 knockdown on the migration, invasion, and proliferation of renal cancer cells. (A, B) Western 
blotting. (C) Transwell assay was performed to determine cell migration (D) and invasion (E). (F) Crystal violet assay to detect the proliferative 
capacity of renal cancer cells. 
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silent hypoxic signaling and a lower frequency of SETD2 

mutations, which explains the favorable prognosis 

observed in patients with low DRS. Moreover, patients 

with MoS3 exhibit an activated tumor microenvironment, 

making them more responsive to immunotherapy. This  

is consistent with our findings. 

 

It is widely recognized that clear cell RCC (ccRCC) 

lacks typical diagnostic markers. In this study, the 

diagnostic risk score (DRS) outperformed age in 

discriminating patients with ccRCC from normal 

samples, distinguishing metastatic patients from those 

with primary tumors, and identifying patients with 

advanced-stage ccRCC from those with early stage 

ccRCC, with higher sensitivity and specificity. 

Therefore, the DRS developed in this study has the 

potential to serve as a prospective biomarker for the 

diagnosis and prognosis of patients with ccRCC. 

 

To improve clinical translatability, we integrated  

DRS with other clinicopathological parameters, such  

as age and the M stage, to create a user-friendly 

prognostic nomogram model. The results demonstrated 

that combining DRS with traditional clinicopathological 

factors can enhance prognostic accuracy, achieving a 

concordance index of 0.7795. This nomogram provides 

several advantages in clinical practice. Compared  

with single clinicopathological parameters, this model 

provides a more comprehensive and accurate assessment 

of patient risk and prognosis by integrating multiple 

prognosis-related factors. For instance, although staging 

pathological has long been a key prognostic determinant 

of renal cancer, sometimes relying solely on this 

parameter fails to effectively stratify high- and low-risk 

patients at the same stage. Our nomogram allows for  

a more precise prognostic prediction and individua- 

lized treatment strategies by enabling further risk 

stratification of patients within the same pathological 

stage. Furthermore, the nomogram displayed multiple 

prognostic factors, making complex risk prediction 

models easy to understand. Doctors should mark the 

patient’s condition on the corresponding line for each 

factor and then add the sum on the ‘total score’ line at 

the bottom to obtain the patient’s risk score and survival 

prediction. This nomogram has the potential to become 

a simple and efficient clinical decision support tool to 

guide individualized treatment strategies and follow-up 

management of renal cancer. 

 

This study found that the DRS we created not only 

predicted the OS of patients with ccRCC but also 

showed significant positive correlations with TIC or 

CSC markers [19]. Increasing evidence supports the 
critical role of the TIC/CSC subpopulation in tumor 

initiation, progression, metastasis, and recurrence, 

which is attributed to properties such as self-renewal, 

multidrug resistance, and immune evasion [30–32]. The 

challenges in achieving complete tumor eradication  

are often attributed to these factors. Our study found  

a strong association between the DRS and tumor 

stemness. Furthermore, the group with a high DRS 

showed increased sensitivity to mTOR inhibitors, such 

as temsirolimus, but lower sensitivity to conventional 

chemotherapeutic agents, such as cisplatin. This 

suggests that tumors with high DRS may respond better 

to mTOR pathway inhibition. Finally, we validated  

the clinical utility of DRS in guiding adjuvant drug 

selection in the RCC-Braun_2020 cohort. Future 

prospective clinical studies are necessary to validate 

the application of the DRS model in therapeutic 

decision making. 

 

This study used the GSE156632 single-cell RNA-

sequencing cohort, which includes seven samples of 

clear cell RCC (ccRCC), to examine heterogeneity 

within the tumor microenvironment. Quality control and 

annotation using established marker genes identified  

six primary cell types: endothelial cells, tumor cells, T 

cells, natural killer cells, macrophages, and monocytes. 

GSVA of the single-cell data showed that tumor  

cells with a high Disulfidptosis-Related Score (DRS) 

had increased activity in pathways associated with 

malignant phenotypes, such as TGF Beta signaling, 

EMT, inflammatory response, KRAS signaling, Notch 

signaling, and Wnt/β-catenin signaling. In contrast, 

tumor cells with low DRS displayed elevated activity  

in metabolic pathways, such as xenobiotic metabolism, 

fatty acid metabolism, cholesterol homeostasis, heme 

metabolism, bile acid metabolism, oxidative phosphory-

lation, glycolysis, and peroxisomes, as well as immune 

pathways, including interferon alpha response, interferon 

gamma response, and complement. Furthermore, cell 

interaction profiling revealed significant communication 

between high-DRS tumor cells and infiltrating immune 

cell populations. This immune-tumor crosstalk promotes 

disease progression and dissemination, as infiltrating 

immune cells and soluble factors, such as cytokines, 

growth factors, chemokines, and exosomes, interact  

to establish an immunosuppressive microenvironment, 

allowing for the evasion of antitumor immunity. These 

findings collectively explain the poor clinical outcomes 

in the high-DRS subgroup. 

 

Checkpoint inhibition has revolutionized the treatment 

of multiple advanced cancers, including ccRCC [33, 

34]. The combination of immune blockade and targeted 

therapy has become the standard treatment for advanced 

patients with ccRCC [35]. However, there are still 

significant challenges to overcome, such as the limited 
number of patients who benefit from checkpoint 

blockade and the occurrence of severe adverse reactions 

associated with such therapies [36, 37]. 
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Therefore, it is imperative to identify new therapeutic 

targets or adjuvants to assist immune therapy for 

ccRCC. According to the current paradigm in solid 

tumor immunology, the response to anti-PD-1 therapy is 

influenced by the pre-existing infiltration of CD8+ T 

cells and a high number of non-synonymous mutations 

[38–42]. However, unlike other types of cancer, the 

response to anti-PD-1 therapy in advanced ccRCC is not 

correlated with neoantigen load, TMB, or HLA zygosity 

[21]. Furthermore, there were no statistically significant 

differences in response to or survival following anti-

PD-1 therapy between immune-infiltrated tumors and 

immune deserts/excluded tumors in advanced ccRCC 

[21]. This study verified the prognostic value of the 

DRS in anti-PD-1 therapy for patients with advanced 

ccRCC. The DRS has the potential to serve as a 

predictive strategy for anti-PD-1 therapy. 

 

This study presents a novel perspective on 

immunooncology and individualized immunotherapy 

for ccRCC. However, it is important to acknowledge the 

inherent limitations of this study. 

 

Bioinformatic analysis requires further experimental 

validation. The lack of clinical cohorts to verify the 

correlation between disulfidoptosis and the tumor 

immune landscape and the prognostic value of the  

DRS in ccRCC limited our analyses. Therefore, further 

validation based on a large-cohort prospective clinical 

trial is warranted. Based on a review of previous studies, 

we highlighted the role of SLC7A11 in ccRCC. Our 

results indicate that SLC7A11 is positively associated 

with immune response and EMT, suggesting its essential 

role in ccRCC metastasis and immunity. 

 

CONCLUSIONS 
 

We present the initial systematic analysis of 

disulfidoptosis in clear cell RCC (ccRCC). The 

activation of disulfidoptosis may serve as a potential 

treatment approach for multiple cancers, and it plays  

a crucial role in tumor microenvironment remodeling. 

These findings enhance our understanding of tumor 

microenvironment cell infiltration and patient response 

to immunotherapy, which can promote personalized 

cancer immunotherapy in the future. SLC7A11 has been 

identified as a critical regulator of ccRCC progression. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

Supplementary Figure 1 presents the workflow of this 
study. The UCSC XENA dataset (http://xena.ucsc.edu/) 

[43] was used to download pan-cancer normalized 

expression profiling data, DNA methylation data,  

TMB, CNV, somatic mutation data, and  

clinical characteristics. The Express-Array database 

(https://www.ebi.ac.uk/arrayexpress/) was used to 

download an external ccRCC cohort, E-MTAB-1980, 

which includes expression profiles and prognostic 

information. To enhance comparability among datasets, 

we converted all RNA-seq data into transcripts per 

million (TPM) format. Furthermore, we obtained single-

cell transcriptome data GSE121636 from the GEO 

database for further analysis. Because these datasets  

are publicly available and do not contain individual 

patient identifiers, ethical review committee approval and 

informed consent were unnecessary. The study excluded 

patients without prognostic information or expression 

profiles, as well as those who died within 30 days. 

 
Identification of distinct disulfidptosis subgroups in 

ccRCC 

 

In a previous study, we identified genes associated with 

disulfidoptosis (DAGs), including SLC7A11, FLNA, 

FLNB, MYH9, TLN1, ACTB, MYL6, MYH10, 

CAPZB, DSTN, IQGAP1, ACTN4, PDLIM1, CD2AP, 

and INF2. We performed consensus clustering using  

the expression matrix of DAGs via the R package 

‘ConsensusClusterPlus’ [44] and determined that the 

best classification number was k=2. 

 
Enrichment analysis between subgroups 

 

Differential gene expression analysis was conducted 

between subgroups using the ‘DESeq2’ R package with 

count data. DEGs were identified using a p-value < 0.05 

and an absolute log-fold change > 2 as thresholds. 

GSEA was then performed using the ‘clusterProfiler’  

R package to elucidate the biological functions and 

molecular mechanisms underlying the differences 

between DC1 and DC2. |NES|> 1, NOM p-value < 0.05, 

and FDR q-value < 0.25 were established as the  

cut-off values. The gmt files necessary for enrichment 

analysis were obtained from the MSigDB database 

(https://www.gsea-msigdb.org/gsea/index.jsp) [45]. 

 
Differences in immune infiltration signatures 

 
Stromal and immune scores based on transcriptome 

profiling were evaluated using the R package 

‘ESTIMATE.’ In each sample, the levels of 23 tumor-

infiltrating immune cell types were quantified using 

single-sample GSEA (ssGSEA). The following cell types 

were included: activated B cells, activated CD4+ T  

cells, activated CD8+ T cells, activated dendritic cells, 

CD56bright natural killer cells, CD56dim natural killer 
cells, eosinophils, gamma delta T cells, immature B cells, 

and immature dendritic cells. MDSCs, macrophages, 

mast cells, monocytes, natural killer T cells, natural killer 
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cells, neutrophils, plasmacytoid dendritic cells, regulatory 

T cells, T follicular helper cells, type 1 T helper cells, 

type 17 T helper cells, and type 2 T helper cells  

are all involved in the anticancer immune response.  

This response involves seven steps: (1) Cancer antigen 

release, (2) cancer antigen presentation, (3) activation, (4) 

immune cell transport to the tumor, (5) immune cell 

infiltration of the tumor, (6) recognition of T cells by 

cancer cells, and (7) destruction of cancer cells are the 

necessary steps for successful tumor remediation [46]. 

The gene data used in this analysis were obtained from 

the Tracking Tumor Immune Phenotype (TIP) website 

(http://biocc.hrbmu.edu.cn/TIP/index.jsp) and quantified 

using the single-sample GSEA (ssGSEA) algorithm to 

measure the levels associated with each step. 

 

Correlation between disulfidptosis and other related 

biological processes 

 

To investigate the correlation between disulfidptosis and 

biological pathways, we used a collection of gene sets 

curated by Mariathasan et al. These gene sets include 

various biological processes, such as angiogenesis 

signature, antigen processing machinery, CD8 T-

effector signature, cell cycle signature, cell cycle 

regulators, DNA damage repair, DNA replication, and 

EMT markers, such as EMT1, EMT2 and EMT3, 

Fanconi anemia signature, homologous recombination, 

immune checkpoint, mismatch repair, nucleotide 

excision repair, pan-fibroblast TGFb response signature 

(Pan-F-TBRS), and Wnt targets [47–49]. 

 

Construction of a risk prediction model related to 

disulfidptosis 

 

To create a prognostic model using these DEGs,  

several statistical analyses were conducted. Initially,  

we performed univariate Cox regression analysis to 

evaluate the prognostic significance of each DEG.  

We selected DEGs that were significantly associated 

with prognosis (p < 0.01) for further analysis. We then 

conducted a multivariate Cox regression analysis to 

identify independent prognostic biomarkers (p < 0.01). 

To reduce the risk of overfitting, we used LASSO 

regression analysis, which enabled us to determine the 

coefficient (β) for each gene included in the prognostic 

model. We then calculated the risk score for each 

patient in the TCGA database using the following 

formula: risk score = ∑ (βi * Ei), where βi represents 

the risk coefficient and Ei denotes the expression of 

each gene. Subsequently, we performed Kaplan–Meier 

survival curves combined with log-rank tests using the 

‘survival’ and ‘survminer’ packages to assess the 
differences in survival between the low- and high-risk 

groups. ROC curves were generated to evaluate the 

sensitivity and specificity of the prognostic model in 

predicting the 1-year, 3-year, 5-year, and 10-year 

survival probabilities. The AUCs were defined using the 

“timeROC” package. Data from the E-MTAB-1980 

cohort were used to validate the risk scoring model. 

Similar to the TCGA dataset, patients in both datasets 

were categorized into high- and low-risk groups based 

on their median risk scores. Furthermore, we performed 

the DeLong test to compare the predictive performance 

of the DRS, as quantified by the AUC, with that  

of other cell death-related gene signatures [50–55]. 

Statistical significance was set at p < 0.05. Univariate 

and multivariate Cox proportional hazard models  

were used to evaluate the prognostic ability of the  

DRS model, independent of other clinicopathological 

features, such as age, sex, histologic grade, pathologic 

stage, T stage, N stage, and M stage. The results were 

used to construct a prognostic nomogram by integrating 

the independent risk variables based on multivariate 

models. Calibration plots were used to measure the 

agreement between the predicted and observed survival 

events of the nomograms. 

 

Single-cell RNA-seq analysis 

 

The GSE156632 dataset [56] was used to obtain single-

cell RNA-sequencing data for seven ccRCC samples. 

The Seurat package [57] was used for cell clustering, 

dimensionality reduction, and other analyses. PCA  

was performed using RunPCA, followed by k-nearest 

neighbor analysis using FindNeighbors. RunTSNE  

was used for dimensionality reduction for visualization 

purposes. Cell type annotation was performed using 

known marker genes. Pseudotime analysis was conducted 

using the Monocle R package, and cell-cell interactions 

were analyzed with the CellChat R package. 

 

Evaluation of drug sensitivity and immunotherapy 

analysis 

 

The ‘pRRophetic’ R package is a valuable tool  

for predicting clinical drug response using baseline 

tumor gene expression data. It utilizes statistical  

models constructed based on gene expression and drug 

sensitivity data from cell lines in the Cancer Genome 

Project (CGP). The ‘pRRophetic’ package in R software 

was used in our study to calculate the half-maximal 

inhibitory concentration (IC50) values of various 

chemotherapeutic and targeted agents for each patient in 

both the high-risk and low-risk groups using the TCGA-

KIRC datasets. Furthermore, data were collected from 

the RCC-Braun_2020 cohort comprising 130 patients 

with ccRCC who received everolimus (32 patients with 

clinical benefit, 63 patients with intermediate clinical 
benefit, and 35 patients with no clinical benefit) and  

181 patients with ccRCC who received nivolumab  

(57 patients with clinical benefit, 57 patients with 
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intermediate clinical benefit, and 67 patients with no 

clinical benefit). The purpose of this study was to 

investigate the predictive ability of the DRS for targeted 

therapy and immunotherapy [21]. 

 

Cell culture 

 

Human 786-O cells obtained from the American  

Type Culture Collection (Manassas, VA, USA) were 

cultured in a CO2 incubator at 37° C. A specific small 

interfering RNA (siRNA) targeting the human gene 

SLC7A11 sequence was used. The siRNA sequence 

was 5′ UCAGAAACACCUGUGUAUGCA 3′ and was 

purchased from Fenghuishengwu company located in 

Hu Nan, China. For the transfection experiment, 786-O 

cells were seeded into six-well plates at a density of  

4 × 105 cells per well and incubated at 37° C in a  

5% CO2 environment until complete adherence to the 

culture surface was achieved. The cells were then 

transfected using the Lipo3000 transfection reagent. 

 

Western blotting 

 

The cells were treated with cell lysis buffer at 100° C 

for 10 min to extract total protein. Proteins were then 

loaded onto a 10% SDS-PAGE gel and electrophoresed 

at a constant voltage of 120V. Finally, the proteins  

were transferred to a PVDF membranes. The PVDF 

membrane was sealed with 5% skim milk powder for  

1 h and incubated overnight at 4° C with primary anti-

bodies. This was followed by a 1-hour incubation with 

secondary antibodies. After incubation, the membranes 

were washed three times with phosphate-buffered saline 

(PBS) and visualized. The relative abundance of proteins 

was assessed using Image Lab analysis software and 

ImageJ software. 

 

Cell proliferation assay 

 

Cell viability was evaluated using a crystal violet 

assay. 786-O cells transfected with siRNA-SLC7A11 

were harvested at 90% confluency and seeded into 96-

well culture plates at a density of 2 × 103 cells/well, 

with five replicate wells for each experimental group. 

The plates were placed in a 37° C, 5% CO2 incubator 

and assessed 24, 48, and 72 h post-seeding using a 

crystal violet assay. For the assay, the culture medium 

was aspirated from each well and 50 μL of 0.5% 

crystal violet staining solution was added. The plates 

were then incubated at room temperature on a bench 

rocker at a frequency of 20 oscillations/min for 20 

min. After staining, the plates were washed with PBS 

to remove excess staining solution. Subsequently, the 
samples were air-dried overnight at room temperature. 

To quantify stained cells, 200 μL of methanol was 

added to each well and incubated for 10 min at room 

temperature. The optical density of each well was 

measured at 570 nm (OD570) by using a microplate 

reader. This measurement provided an indication of 

cell viability. 

 

Transwell migration and invasion assay 
 

A 24-well Transwell chamber (8 μm, Thermo Fisher 

Scientific, Waltham, MA, USA) was prepared by 

coating the inserts overnight at 4° C with or without 100 

mL of matrix gel substrate provided by BD Biosciences 

(San Jose, CA, USA). Next, 100 μL of cell suspension 

containing 3 × 104 cells/mL was added to the Transwell 

inserts with or without the matrix gel substrate. The 

culture medium (600 μL) containing 10% FBS was 

added to the lower chamber. The cells were incubated  

in Transwell chambers for 48 h. After incubation,  

cells were fixed with 4% paraformaldehyde at room 

temperature for 20 min. The cells were then stained 

with 0.5% crystal violet for 5 min. The stained cells 

were then counted to evaluate their presence and 

distribution, allowing for the assessment of cell 

migration or invasion through the Transwell chambers, 

with or without the matrix gel substrate, using cell 

fixation and crystal violet staining techniques. 

 

Statistical analysis 
 

Statistical analyses were conducted using R software 

(version 4.2.1) and appropriate packages. Kaplan–Meier 

survival analysis was used to establish survival curves, 

and the log-rank test was performed to compare the 

statistical significance of survival rates between the 

different risk groups. Univariate and multivariate Cox 

regression models were constructed to examine the 

prognostic power of clinicopathological variables and 

risk scores. Chi-square or Fisher’s exact tests were used 

to determine the association between risk scores and 

clinical characteristics. A two-tailed p < 0.05 indicated 

statistical significance (*p < 0.05; **p < 0.01; ***p < 

0.001; ****p < 0.0001). 

 

Data availability 

 

The corresponding author can be contacted for free  

to receive any data or R codes used in this study.  

All authors reviewed and approved the final draft  

of the manuscript. Publicly accessible datasets were  

also examined. These are accessible through GEO 

(https://www.ncbi.nlm.nih.gov), The Cancer Genome 

Atlas (https://portal.gdc.cancer.gov/), and UCSC Xena 

(http://xena.ucsc.edu). 
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Supplementary Figure 1. Workflow of our research. 
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Supplementary Figure 2. Landscape of mutation and methylation of 15 disulfide-related molecules. (A) Waterfall diagram 

showing the mutation types of disulfidation-related genes in multiple cancers. (B) Heatmap showing the mutation frequency of 15 disulfide-
related molecules in pan-cancer. (C) Bubble chart showing the correlation between methylation of 15 disulfide-related molecules and overall 
survival. 
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Supplementary Figure 3. Establishment of DRS by LASSO regression analysis. (A) LASSO coefficient profiles of the 32 DEGs in ccRCC. 

(B) Tenfold cross-validation LASSO regression analysis to estimate the optimal LASSO regularization parameter. (C, D) DRS distribution, 
survival status, and survival time of patients with ccRCC in the TCGA-KIRC dataset. (E) Heatmap of the mRNA expression of 14 DRS model-
related genes in patients with ccRCC from TCGA-KIRC (n = 518) dataset. (F) Coefficients for 14 modeled genes. 
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Supplementary Figure 4. Verify the prognostic value of DRS in the E-MATB-1980 cohort. (A) Survival analysis for overall survival of 
the two DRS groups in the E-MATB-1980 cohort. (B) Time-dependent ROC analysis of the predictive value of the DRS in the overall survival of 
patients at 1, 3, 5, and 10 years based on the E-MATB-1980 cohort. 
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Supplementary Figure 5. Functional enrichment indicates that SLC7A11 is potentially associated with EMT and the TME in 
ccRCC. (A) The box plot compares the expression levels of the SLC7A11 gene between tumor and normal tissues. (B) Volcano plot of 

SLC7A11-related DEGs in ccRCC. Red and blue points indicate the upregulated and downregulated genes, respectively. (C) GSEA Hallmark 
analysis. (D) GSEA KEGG analysis. (E) GSEA GO analysis. 
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Supplementary Table 1. Variances in gene mutation frequencies between DC1 and DC2 groups. 

Hugo_symbol Group1 Group2 n_mutated_group1 n_mutated_group2 p_value 

PBRM1 Cluster1 Cluster2 83 of 228 63 of 128 0.024531121 

PBRM1 Cluster2 Cluster1 63 of 128 83 of 228 0.024531121 

BAP1 Cluster1 Cluster2 21 of 228 16 of 128 0.367009091 

BAP1 Cluster2 Cluster1 16 of 128 21 of 228 0.367009091 

TTN Cluster1 Cluster2 34 of 228 24 of 128 0.371288981 

TTN Cluster2 Cluster1 24 of 128 34 of 228 0.371288981 

VHL Cluster1 Cluster2 108 of 228 58 of 128 0.740531199 

VHL Cluster2 Cluster1 58 of 128 108 of 228 0.740531199 

MUC16 Cluster1 Cluster2 17 of 228 9 of 128 1 

MUC16 Cluster2 Cluster1 9 of 128 17 of 228 1 
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