Research Paper Volume 16, Issue 10 pp 9228—9250
Leveraging pQTL-based Mendelian randomization to identify new treatment prospects for primary biliary cholangitis and primary sclerosing cholangitis
- 1 Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
- 2 Department of Ophthalmology, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
- 3 Health Science Center, Ningbo University, Ningbo 315211, China
Received: December 26, 2023 Accepted: April 15, 2024 Published: May 27, 2024
https://doi.org/10.18632/aging.205867How to Cite
Copyright: © 2024 Dai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are autoimmune disorders characterized by progressive and chronic damage to the bile ducts, presenting clinicians with significant challenges. The objective of this study is to identify potential druggable targets to offer new avenues for treatment. A Mendelian randomization analysis was performed to identify druggable targets for PBC and PSC. This involved obtaining Cis-protein quantitative trait loci (Cis-pQTL) data from the deCODE database to serve as exposure. Outcome data for PBC (557 cases and 281,127 controls) and PSC (1,715 cases and 330,903 controls) were obtained from the FINNGEN database. Colocalization analysis was conducted to determine whether these features share the same associated SNPs. Validation of the expression level of druggable targets was done using the GSE119600 dataset and immunohistochemistry for clinical samples. Lastly, the DRUGBANK database was used to predict potential drugs. The MR analysis identified eight druggable targets each for PBC and PSC. Subsequent summary-data-based MR and colocalization analyses showed that LEFTY2 had strong evidence as a therapeutic candidate for PBC, while HSPB1 had moderate evidence. For PSC, only FCGR3B showed strong evidence as a therapeutic candidate. Additionally, upregulated expression of these genes was validated in PBC and PSC groups by GEO dataset and clinical samples. This study identifies two novel druggable targets with strong evidence for therapeutic candidates for PBC (LEFTY2 and HSPB1) and one for PSC (FCGR3B). These targets offer new therapeutic opportunities to address the challenging nature of PBC and PSC treatment.