Research Paper Volume 15, Issue 22 pp 12817—12851
Prognostic hub gene CBX2 drives a cancer stem cell-like phenotype in HCC revealed by multi-omics and multi-cohorts
- 1 National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518000, Guangdong, China
- 2 School of Medicine, Southern University of Science and Technology, Shenzhen 518100, Guangdong, China
- 3 International Cancer Center, Shenzhen University Medical School, Shenzhen 518100, Guangdong, China
- 4 Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518100, Guangdong, China
Received: August 1, 2023 Accepted: October 7, 2023 Published: November 17, 2023
https://doi.org/10.18632/aging.205173How to Cite
Copyright: © 2023 Meng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with a high prevalence and fatality rate. CBX2 has been demonstrated to impact the development and advancement of various cancers, albeit it has received limited attention in relation to HCC. In this study, CBX2 and CEP55 were screened out with the refined triple regulatory networks constructed by total RNA-seq datasets (TCGA-LIHC, GSE140845) and a robust prognostic model. Aberrantly higher expression levels of CBX2 and CEP55 in HCC may be caused by CNV alterations, promoter hypo-methylation, open chromatin accessibility, and greater active marks such as H3K4me3, H3K4me1, and H3K27ac. Functionally, CBX2, which was highly correlated with CD44, shaped a cancer stem cell-like phenotype by positively regulating cell-cycle progression, proliferation, invasion, metastasis, wound healing, and radiation resistance, revealed by combining bulk RNA-seq and scRNA-seq datasets. CBX2 knockdown validated its role in affecting the cell cycle. Importantly, we revealed CBX2 could activate gene by cooperating with co-regulators or not rather than a recognizer of the repressive mark H3K27me3. For instance, we uncovered CBX2 bound to promoter of CTNNB1 and CEP55 to augment their expressions. CBX2 showed a highly positive correlation with CEP55 at pan-cancer level. In addition, CBX2 and CEP55 may enhance extracellular matrix reprograming via cancer-associated fibroblast. Surprisingly, patients with high expression of CBX2 or CEP55 exhibited a higher response to immunotherapy, indicating that CBX2 and CEP55 may be promising therapeutic targets for HCC patients.