Research Perspective Volume 14, Issue 20 pp 8140—8149
Rapamycin treatment early in life reprograms aging: hyperfunction theory and clinical practice
- 1 Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
Received: October 7, 2022 Accepted: October 20, 2022 Published: October 24, 2022
https://doi.org/10.18632/aging.204354How to Cite
Copyright: © 2022 Blagosklonny. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Making provocative headlines, three outstanding publications demonstrated that early-life treatment with rapamycin, including treatments during developmental growth, extends lifespan in animals, confirming predictions of hyperfunction theory, which views aging as a quasi-program (an unintended continuation of developmental growth) driven in part by mTOR. Despite their high theoretical importance, clinical applications of two of these studies in mice, Drosophila and Daphnia cannot be implemented in humans because that would require growth retardation started at birth. A third study demonstrated that a transient (around 20% of total lifespan in Drosophila) treatment with rapamycin early in Drosophila adult life is as effective as lifelong treatment, whereas a late-life treatment is not effective. However, previous studies in mice demonstrated that a transient late-life treatment is highly effective. Based on hyperfunction theory, this article attempts to reconcile conflicting results and suggests the optimal treatment strategy to extend human lifespan.