Abstract

Over the past decades, the incidence and mortality rates of breast cancer (BC) have increased rapidly; however, molecular biomarkers that can reliably detect BC are yet to be discovered. Our study aimed to identify a novel signature that can predict the prognosis of patients with BC. Data from the TCGA-BRCA cohort were analyzed using univariate Cox regression analysis, and least absolute shrinkage and selection operator (LASSO) analysis was performed to build a stable prognostic model. Subsequently, Kaplan–Meier (K–M) and receiver operating characteristic (ROC) analyses were performed to demonstrate the predictive power of our gene signature. Each patient was assigned to either a low- or high-risk group. Patients with high-risk BC had poorer survival than those with low-risk BC. Cox regression analysis suggested that our signature was an independent prognostic factor. Additionally, decision curve analysis and calibration accurately predicted the capacity of our nomogram. Thus, based on the differentially expressed genes (DEGs) of mitophagy-related tumor classification, we established a 13-gene signature and robust nomogram for predicting BC prognosis, which can be beneficial for the diagnosis and treatment of BC.