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INTRODUCTION 
 

Breast cancer (BC) is one kind of malignant tumor and 

accounts for one-quarter of cases of cancer in women. 

Over the past decades, the incidence and mortality of 

BC in developing countries have increased rapidly, 

especially in China [1, 2]. Approximately 2 million 

people were newly diagnosed with BC and 600 

thousand died of this malignant tumor worldwide in 

2018 [3]. There are many known risk factors involved 

in the tumorigenesis and progression of BC, such as 

obesity, genetic factors, family history, and endocrine 

factors. According to specific protein expressions such 

as human epidermal growth factor receptor 2 (HER2), 

estrogen receptor (ER), and progesterone receptor (PR), 

four subtypes of BC were identified: HER2-enriched 

(HER2+), TNBC (ER−, PR−, HER2−, triple negative 

breast cancer), luminal A (ER+ or PR+, HER2−), and 

luminal B (ER+ or PR+, HER2+) [4, 5]. Despite 

advances in surgical treatment, endocrine therapy, 

radiation treatment, chemotherapy and targeted therapy, 

the five-year survival rate of BC, especially in TNBC, 

still low owing to distant metastasis [6, 7]. Although 

there have been many studies on BC, the mechanisms 

underlying its progression remain unclear. Thus, 
building a novel gene signature and clarifying the 

potential mechanisms in BC patients are critically 

needed. 
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ABSTRACT 
 

Over the past decades, the incidence and mortality rates of breast cancer (BC) have increased rapidly; however, 
molecular biomarkers that can reliably detect BC are yet to be discovered. Our study aimed to identify a novel 
signature that can predict the prognosis of patients with BC. Data from the TCGA-BRCA cohort were analyzed 
using univariate Cox regression analysis, and least absolute shrinkage and selection operator (LASSO) analysis 
was performed to build a stable prognostic model. Subsequently, Kaplan–Meier (K–M) and receiver operating 
characteristic (ROC) analyses were performed to demonstrate the predictive power of our gene signature. Each 
patient was assigned to either a low- or high-risk group. Patients with high-risk BC had poorer survival than 
those with low-risk BC. Cox regression analysis suggested that our signature was an independent prognostic 
factor. Additionally, decision curve analysis and calibration accurately predicted the capacity of our nomogram. 
Thus, based on the differentially expressed genes (DEGs) of mitophagy-related tumor classification, we 
established a 13-gene signature and robust nomogram for predicting BC prognosis, which can be beneficial for 
the diagnosis and treatment of BC. 
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Mitophagy is a selective process in which mitochondria 

are selectively cleared through the autophagic pathway. 

Mitophagy is critical for cellular homeostasis, and cells 

can eliminate dysfunctional mitochondria or reduce 

mitochondrial numbers via the mitophagy mechanism 

[8, 9]. Mitochondria are important cellular organelles 

that perform many different functions, from cell death 

regulation and energy generation to immune responses 

and fatty acid oxidation [10, 11]. Mitophagy can be 

mediated by multiple molecular mechanisms, such as 

the NIX, FundC1, and PINK1/Parkin signaling 

pathways. Mitophagy disorders are closely related to 

various cancers, including rectal cancer, lung cancer, 

and BC. Deng et al. revealed that degradation of ULK1 

attenuates mitophagy and promotes BC bone metastasis 

[12]. Although there have been many studies on 

mitophagy, its role in BC has not been fully studied. 

 

In our analysis, we established a stable signature, 

including 13 genes, based on differentially expressed 

genes (DEGs) in mitophagy-related tumor 

classification. Kaplan–Meier (K–M) and evaluation 

analyses of the signature were performed across the 

TCGA-BRCA project. The signature was validated in 

the independent BC cohort GSE20685. In addition, 

tumor microenvironment (TME), immunotherapy 

response, drug sensitivity, and putative molecular 

pathways were investigated. Taken together, these 

results provide a novel treatment option and predictive 

tool for BC. 

 

MATERIALS AND METHODS 
 

Data 

 

Expression data and clinical information of BC samples 

were downloaded from the Gene Expression Omnibus 

(GEO) (GSE20685, https://www.ncbi.nlm.nih.gov/geo/) 

database and The Cancer Genome Atlas (TCGA) 

(https://portal.gdc.cancer.gov/repository). The TCGA-

BRCA project was used for breast cancer analysis. The 

batch effect of the GEO data was eliminated by 

normalization. Transcriptome profiling was converted 

into fragments per kilobase million (FPKM) and 

combined with clinical information for further analysis. 

In addition, we obtained 29 mitophagy-related genes 

(MRGs) from the Pathway Unification online database 

(Supplementary Table 1). 

 

Identification of differentially expressed MRGs 

 

To explore the expression profile of MRGs in breast 

cancer, limma algorithm was used to identify the 

differentially expressed MRGs by “limma” R package 

across the TCGA-BRCA dataset [13]. DEGs were 

screened using the criteria FDR < 0.05. A protein–

protein interaction (PPI) network was used to determine 

the interaction of MRGs using the Search Tool for the 

Retrieval of Interacting Genes (STRING, https://string-

db.org/) [14]. Additionally, a correlation network of 

m7G-related DEGs was formed (interaction score cutoff 

= 0.2) using the “reshape2” and “igraph” packages in R 

[15]. 

 

Consensus clustering 

 

Distinct consensus clustering was conducted using 

differentially expressed MRGs. The threshold was set as 

iteration = 100 and the resample rate = 80%. Consensus 

clustering analysis was performed using the 

“ConsensusClusterPlus” R package and the survival 

difference between different clusters was evaluated 

using the “survival” R package [16]. Differences in 

clinical characteristics between each cluster were shown 

by a heatmap across the TCGA-STAD project using the 

“pheatmap” R package. 

 

Development of a gene prognostic signature 

 

First, we analyzed DEGs between BC subtypes using 

the criteria FDR < 0.05. Prognostic differentially 

expressed genes were identified using univariate Cox 

analysis. Next, we used the R package “glmnet” to 

perform LASSO Cox regression analysis of these 

prognostic DEGs [17]. The risk score of each BC was 

calculated as follows: 
1

Risk score ( ) ( ),
n

i
Coef i Expr i

=
=   

and BC samples were assigned to two subgroups 

according to the median risk score [18]. Sequentially, 

difference of survival of low- and high-risk BC was 

analyzed in TCGA-BRCA as the training dataset and 

GSE20685 as the test dataset, using the “survival” R 

package. The area under the receiver operating 

characteristic (ROC) curve (AUC) values were used to 

establish the prognostic value of the MRG signature 

across TCGA-BRCA and GSE20685 [19]. Besides, risk 

score distribution and the survival status were 

visualized by the “pheatmap” R package across TCGA-

BRCA and GSE20685. Principal component analysis 

(PCA) and t-distributed stochastic neighbor embedding 

(t-SNE) analysis were used to evaluate the ability of the 

signature to distinguish low- and high-risk BC across 

TCGA-BRCA and GSE20685 [20, 21]. 

 

Prognostic values of the signature and subgroup 

analysis 

 

Multivariate and univariate Cox regression analyses of 

the signature and several clinical characteristics were 
used to identify the independent prognostic factors. 

Moreover, the expression profiles of genes contained in 

the signature, as well as the correlation between the 

signature and clinical characteristics, are presented in a 
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heatmap. Additionally, differences in risk between 

distinct clinical subgroups were evaluated using the 

limma algorithm, and the survival of low- and high-risk 

BC in distinct clinical subgroups was assessed using K–

M analysis [22]. 

 

Construction and verification of a nomogram 

 

A nomogram was constructed with the stable signature 

and several clinical characteristics using the “rms” and 

“regplot” R packages [23]. A calibration curve was 

constructed to determine the predictive probability of 

the nomograms. ROC and decision curve analysis 

(DCA) analyses were performed to demonstrate the 

robustness of the nomogram as a predictive factor [24]. 

 

Functional enrichment analyses 

 

Gene Ontology (GO) analysis, including BP, CC, and 

MF analyses, was conducted to evaluate the putative 

cellular functions of DEGs in low- and high-risk BC 

[25]. Kyoto Encyclopedia of Genes and Genomes 

(KEGG) analysis was performed to identify the relevant 

pathways related to DEGs in low- and high-risk BC 

[26]. The top five enriched pathways of low- and high-

risk BC were visualized through gene set enrichment 

analysis (GSEA) analysis, and enriched pathways of 

low- and high-risk BC were assessed by gene set 

variation analysis (GSVA) analysis [27, 28]. The 

functional enrichment analysis was conducted  

by “limma,” “org.Hs.eg.db,” “clusterProfiler,” 

“enrichplot,” “ggplot2,” “GOplot,” and “GSVA” R 

packages [29]. 

 

Tumor immune cell infiltration 

 

We established the immune cell infiltration patterns of 

low- and high-risk BC using the “TIMER,” 

“CIBERSORT,” “CIVERSORT-ABS,” “QUANTISEQ,” 

“MCPCOUNTER,” “XCELL,” and “EPIC” algorithms, 

visualized with a heatmap. In addition, scores of 

infiltrating immune cells (CD4+T cells, aDC, B cells, 

DC, iDC, mast cells, CD8+T cells, NK cells, 

neutrophils, pDC, macrophages, T helper cells, Tfh, 

Th1, Th2, Treg, etc.) and immune functions (APC-co-

inhibition, APC-co-stimulation, CCR, check-point, 

cytolytic-activity, and et al.) of low- and high-risk BC 

were also evaluated across TCGA-BRCA and 

GSE20685 datasets [30]. 

 

Drug sensitivity analysis 

 

Studies have demonstrated that higher inhibitory 
concentration (IC50) values are related to lower 

antitumor capacity. To investigate drug sensitivity, we 

used our established model in the genomics of drug 

sensitivity in cancer (GDSC) 

(https://www.cancerrxgene.org/). The R package 

“pRRophetic” was used to analyze drug sensitivity [31]. 

 

Statistical analysis 

 

R software (version 4.1.3) and Perl-5.32 were applied 

for statistical analysis. Subgroup comparisons were 

conducted using the Wilcoxon test or Student’s t-test. 

Spearman’s correlation analysis was performed to 

analyze the correlation between the two continuous 

variables. The Kruskal-Wallis test was used to compare 

the three groups. Statistical significance was defined as 

p < 0.05. 

 

RESULTS 
 

Identification of DEGs between tumor and normal 

samples 

 

The mRNA expression of 29 MRGs was evaluated 

between normal and tumor samples from TCGA 

database. Then, 23 DEGs were identified, 17 of which 

(CSNK2A1, CSNK2B, FUNDC1, MFN2, MTERF3, 

PGAM5, PRKN, SQSTM1, SRC, TOMM20, 

TOMM22, TOMM40, TOMM5, TOMM70, UBB, 

ULK1, and VDAC1) were upregulated, whereas six of 

these genes (CSNK2A2, MAP1LC3B, PINK1, 

RPS27A, TOMM7, and UBC) were downregulated 

(Figure 1A and 1B). In addition, PPI was used to 

explore the correlations between the MRGs (Figure 1C). 

The correlation network is shown in Figure 1D. 

 

Tumor classification based on MRGs 

 

Unsupervised clustering analysis was performed to 

evaluate the efficacy of MRGs on BC samples. 

According to the results of the relative change in the 

area under the curve (AUC) of the cumulative 

distribution function (CDF), the optimal cluster number 

was K = 3 (Figure 2A, 2B and 2C). BC samples were 

divided into three subtypes (N = 333, 301, and 443) 

based on mitophagy-related genes. The difference in 

survival among the three subtypes was significant 

(Figure 2D). DEGs between the three groups of 

subtypes were analyzed, and the heatmap combined 

with clinical information is shown in Figure 2E. 

 

Establishment of the 13-gene signature 
 

DEGs between the three groups of subtypes were 

evaluated using univariate Cox analyses, and 13 genes 

were identified as prognosis-related across TCGA-

BRCA. ADAM9, MAL2, and CLEC3A were risk genes 

(HR > 1), whereas TNFRSF14, RELB, SEMA3B, 

IGFALS, CEBPD, KRTCAP3, CCL19, CHAD, KRT5, 

https://www.cancerrxgene.org/
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Figure 1. Differentially expressed genes (DEGs) related to mitophagy were identified between cancer and normal tissue. (A) 

Heatmap of mitophagy-related genes (MRGs) expression profiles. (B) Boxplots of the expression of DEGs. (C) Protein-protein interaction 
(PPI) network of DEGs. (D) Correlation network of DEGs. Red represents positive correlations while blue represents negative correlations. *p 
< 0.05; **p < 0.01; ***p < 0.001. 

 

 
 

Figure 2. Tumor classification based on mitophagy-related genes (MRGs). (A) Cumulative distribution function (CDF) curves. (B) 

Delta area curve of consensus clustering. (C) Consensus clustering matrix. (D) Kaplan–Meier (K–M) survival analysis of the three subgroups. 
(E) Heatmap of DEG expression profiles in three subgroups. 
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and LTF were protective genes (HR < 1) (Figure 3A). 

We identified a 13-gene signature using the LASSO 

Cox regression analysis (Figure 3A and 3B). The 

formula for the risk score is as follows: 

 

Risk score = (–0.065 × TNFRSF14exp.) + (–0.006 × 

RELBexp.) + (–0.132 × SEMA3Bexp.) + (0.059 × 

ADAM9exp.) + (–0.007 × IGFALSexp.) + (0.031 × 

MAL2exp.) + (–0.039 × CEBPDexp.) + (–0.095 × 

KRTCAP3exp.) + (–0.066 × CCL19exp.) + (–0.011 × 

CHADexp.) + (–0.014 × KRT5exp.) + (0.044 × 

CLEC3Aexp.) + (–0.005 × LTFexp.) (Figure 3A and 3B). 

Patients with BC were divided into high- and low-

risk groups based on the median value (Figure 3E). 

The survival curve suggested that high-risk BC 

patients had poorer survival rates than that of low-

risk BC patients (Figure 3C). ROC analysis was 

performed to evaluate the predictive model 

constructed using the risk score. The AUC of the 

ROC curves at 1, 3, and 5-year were 0.694, 0.683, 

and 0.682, respectively (Figure 3D). In addition, PCA 

analysis presented that BC patients in different 

groups were well separated into different subtypes 

(Figure 3F).  

 

 
 

Figure 3. Establishment of a 13-gene signature in TCGA cohort. (A) Differentially expressed genes (DEGs) were penalized by LASSO 

Cox regression analysis. (B) Cross-validation of candidate genes based on the minimum lambda value. (C) Survival analysis between two risk 
subgroups. (D) Receiver operating characteristic (ROC) curve of the 13-gene signature. (E) Survival time and status of each breast cancer 
(BC) sample based on the risk score. (F) Principal component analysis (PCA) of the 13-gene signature. 
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Validation of the risk signature 

 

The GSE20685 dataset from the GEO database was 

selected for validation. First, mRNA expression levels 

were normalized for subsequent analysis. All the appros 

in the GEO cohort were divided into low- and high-risk 

subtypes (Figure 4A and 4B). Consistent with TCGA 

analysis, BC patients in the high-risk group had poorer 

survival rates (Figure 4C). The AUC of the ROC curve 

at 1-year, 3-year, and 5-year were 0.815, 0.647, and 

0.621, respectively (Figure 4D). In addition, PCA 

displayed a moderate difference between the two groups 

(Figure 4E). The results of GSE20685 also 

demonstrated that our prognostic model had moderate 

predictive capability. 

Independent prognostic analysis of the risk model 

 

Univariate and multivariate Cox regression analyses 

were performed to estimate independent prognostic 

factors for patients, univariate and multivariable Cox 

regression analysis was performed. The results revealed 

that the risk score (HR = 5.458, 95% CI = 3.441 – 

8.657) was a prognostic factor in the TCGA cohort 

(Figure 5A). Multivariate analysis revealed that the risk 

score (HR = 4.367, 95% CI = 2.726 – 6.995) was an 

independent factor for BC patients (Figure 5B). Figure 

5C shows that the risk score (HR = 3.233, 95% CI 1.677 

– 6.231) was a prognostic factor in the GSE20685 

dataset. Multivariate analysis revealed that the risk 

score (HR = 3.701, 95% CI = 1.781 – 7.691) was an

 

 
 

Figure 4. Validation of the 13-gene signature in GSE20685. (A and B) Survival time and status of each breast cancer (BC) sample 

based on the risk score. (C) Survival analysis between two risk subgroups. (D) Receiver operating characteristic (ROC) curve of the 13-gene 
signature. (E) Principal component analysis (PCA) of the 13-gene signature. 
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independent factor for BC patients in the GSE20685 

cohort (Figure 5D). Moreover, based on the TCGA 

cohort, a clinicopathological information heatmap was 

displayed, which showed that BC patients between the 

two groups showed a significant correlation with tumor 

stage, age, and T classification (Figure 5E). 

 

Next, the correlation between the risk scores and 

clinical characteristics was investigated. As shown in 

Figure 6A, different subgroups, including N stage, 

age, T stage, and stage, had significantly different 

risk scores. To further verify the reliability of the risk 

model, subgroup analysis confirmed the differences 

in survival between the low- and high-risk groups in 

different cancer subgroups, including subgroups of 

age > 65 years, female sex, M1, age ≤ 65 years, N0, 

stage III-IV, N1-3, stage I-II, T1+2, and T3+4 

(Figure 6B). 

 

 
 

Figure 5. Assessment of the clinical prognostic value of the risk score model in patients with breast cancer (BC) by 
univariate and multivariate Cox analysis. (A) Univariate independent Cox analysis for TCGA cohort. (B) Multivariate independent Cox 
analysis for TCGA cohort. (C) Univariate independent Cox analysis for GSE20685. (D) Multivariate independent Cox analysis for GSE20685. 
(E) Heatmap of the 13-gene signature and clinicopathological manifestations. 
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Establishment of a prognostic nomogram for BC 

patients 

 

Based on TCGA cohort, we generated a new prognostic 

nomogram to predict BC patient survival (Figure 7A), 

which revealed that the prognostic nomogram could 

systematically predict the overall survival (OS) of BC 

patients at 1, 3, and 5 years. The calibration plots 

showed good agreement between the actual and 

predicted outcomes (Figure 7B). In addition, the AUC 

of the nomogram for predicting survival was 0.844 

(Figure 7C), and DCA showed a robust predictive 

probability of the nomogram (Figure 7D). 

 

Functional enrichment of the risk signature 

 

To research the functional annotations of the 13-gene 

risk signature, we performed enrichment analysis on 

DEGs between the high- and low-risk groups. As 

shown in Figure 8A and 8C, GO enrichment revealed 

that these DEGs were mainly enriched in “response 

to chemokine” and “chemokine-mediated signaling 

pathway” chemokine-mediated signaling pathways. 

KEGG enrichment showed significant enrichment of 

“viral protein interaction with cytokine and cytokine 

receptor” and “NF-kappa B signaling pathway” 

(Figure 8B and 8D). GSEA was performed to 

evaluate the different pathways between the low- and 

high-risk groups. Results showed that “cell cycle,” 

“progesterone mediated oocyte maturation,” 

“homologous recombination,” “steroid biosynthesis” 

and “terpenoid backbone biosynthesis” were the top 5 

enriched pathways in high-risk group. In the low-risk 

group, the top five enriched pathways were the 

“chemokine signaling pathway”, “hematopoietic cell 

lineage”, “cytokine-cytokine receptor interaction”, 

“neuroactive ligand receptor interaction, and 

“primary immunodeficiency” (Figure 8E). In 

addition, as shown in Figure 8F, from the heatmap of 

GSVA, significant differences in enriched functions 

between the low- and high-risk groups were 

observed.  

 

 

Figure 6. Subgroup analysis of the risk score. (A) Correlation of risk models with clinical characteristics. (B) Survival analysis between 

two risk subgroups during clinical subgroups. 
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Comparison of the immune activity among 

subgroups 

 

Previous studies have shown that TME plays a 

significant role in tumor development [32, 33]. To 

investigate the differences in immune-related 

annotations and immune cell infiltration between 

subtypes, ssGSEA was performed. As shown in Figure 

9A, we assessed the differences in immune cell 

infiltration between subtypes using seven different 

algorithms. aDCs, NK cells, Tregs, Th2 cells, and Th1 

cells did not differ between the two groups in the TCGA 

cohort. B cells, DC, iDC, CD4+T cells, mast cells, 

CD8+T cells, neutrophils, pDC, T helper cells, Tfh, and 

TIL infiltrated at a greater rate in the low-risk subgroup, 

while macrophages infiltrated at a greater rate in the 

high-risk group (Figure 9B). CCR, cytolytic activity, 

checkpoint, HLA, Type II IFN response, MHC class I, 

parainflammation, T cell co-stimulation, and inflam-

mation promotion were usually more significant in the 

low-risk group (Figure 9C). Similar results were 

observed in the GEO cohort (Figure 9D and 9E). 

 

Predicting sensitivity to chemotherapy drugs 

 

Currently, chemotherapy remains the mainstay of 

adjuvant therapy for the treatment of patients with 

BC [34, 35]. However, many patients are prone to 

develop resistance to chemotherapy drugs. In the 

current study, we predicted the response of 

subgroups to certain chemotherapy drugs (Figure 

10). The results revealed that high-risk BC patients 

showed higher sensitivity to AKT inhibitor VIII, 

JNK inhibitor VIII, and rapamycin, suggesting that 

high-risk patients can benefit from therapeutic 

agents. Additionally, we found that high-risk BC 

patients had higher estimated IC50s for five 

chemotherapy drugs (5-Fluorouracil, doxorubicin, 

erlotinib, GSK-650394, and salubrinal) than that of 

low-risk BC patients. 

 

 
 

Figure 7. Establishment of nomogram model and calibration curves. (A) The predictive nomogram. (B) The calibration curves of 

the nomogram. (C) Receiver operating characteristic (ROC) curve analysis of the clinicopathological manifestations and nomogram. (D) The 
decision curve analyses (DCA) plot. 
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Figure 8. Functional analyses of the 13-gene signature in the TCGA cohort. (A, B) GO enrichment analysis of differentially 

expressed genes (DEGs) between the high and low-risk group. (C, D) KEGG enrichment analysis of DEGs between the high-risk group and 
low-risk group. (E) GSEA of high-risk group and low-risk group. (F) Gene set variation analysis (GSVA) of high-risk group and low-risk group. 
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DISCUSSION 
 

Dysregulated gene expression in BC tissues has been 

extensively investigated. Cancer cells can selectively 

suppress or increase specific mRNA translation to 

promote tumor development and metastasis, leading to 

poor survival of cancer patients [36]. However, there is 

still no clear understanding of how BC develops and 

progresses. A new prognostic signature for BC patients, 

and clarification of potential mechanisms need to be 

identified. Mitophagy is a type of selective autophagy in 

which mitochondria are selectively cleared by the 

autophagy pathway [37, 38]. Mitophagy is critical for 

intracellular environmental stability, and cells use this 

mechanism to eliminate mitochondrial dysfunction or 

reduce the number of mitochondria [39, 40]. Mitophagy 

 

 
 

Figure 9. Analysis of immune cell infiltration. (A) Heatmap of immune cell infiltration. (B) Boxplot of immune cell infiltration in TCGA 

cohort. (C) Boxplot of immune function in TCGA cohort. (D) Boxplot of immune cell infiltration in GSE20685. (E) Boxplot of immune function 
in GSE20685. 
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can be mediated by a variety of molecular mechanisms 

such as PINK1 the Parkin, NIX, and FundC1 pathways. 

Mitophagy disorder leads to a variety of cancers, 

including rectal cancer, lung cancer, and BC. Deng et 

al. found that degradation of ULK1 inhibits mitophagy 

and promotes BC bone metastasis [12]. However, the 

role of mitophagy in BC has not been fully established. 

In the present study, we built a 13-gene signature based 

on DEGs of mitophagy-related tumor classification as a 

novel biomarker for the prognosis of BC and developed 

a comprehensive analysis of the signature's value for 

determining risk stratification, chemotherapy response, 

and immune activity in patients with BC. 

 

Our 13-gene (ADAM9, MAL2, CLEC3A, TNFRSF14, 

RELB, SEMA3B, IGFALS, CEBPD, KRTCAP3, 

CCL19, CHAD, KRT5, and LTF) signature based on 

DEGs of mitophagy-related tumor classification was 

conducted for BC. These genes play important roles in 

various cancers including BC. Xu et al. reported that the 

circNINL/miR-921 axis could upregulate the expression 

of ADAM9, the direct target of miR-921, and activate 

β-catenin signaling to promote the progression of BC 

[41]. Jun et al. discovered that CLEC3A promotes 

tumor progression and poor prognosis in BC via the 

PI3K/AKT signaling pathway [42]. Besides, Fang et al. 

showed that MAL2 suppresses tumor antigen 

presentation and drives immune evasion in BC [43]. 

Additionally, Zhou et al. revealed that ADAM9 may 

mediate BC progression via AKT/NF-kB signaling [44]. 

Although these genes are still unknown, we 

demonstrated their prognostic capacity in BC and

 

 
 

Figure 10. Chemotherapeutic response-prediction of the 13-gene signature. 
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confirmed the poor outcome of high-risk BC identified 

by the signature calculated using gene expression. 

 

The 13 gene signature showed a significant correlation 

with BC OS when analyzed via univariate Cox. The K–

M analysis found that a higher risk score for BC was 

associated with a poorer prognosis. Meanwhile, our 

signature was demonstrated to be a reliable prognostic 

indicator for patients with BC using multivariate Cox 

regression analysis. ROC curve analysis confirmed the 

robust predictive capacity of our model. A nomogram 

was constructed using a 13-gene signature and clinical 

characteristics. The calibration curves of 1-, 3-, and 5-

year survival rates indicated the accuracy of predicting 

survival probabilities for BC, which illustrated that our 

nomogram was an excellent predictor. With the 

development of bioinformatics, accumulating tools have 

identified various specific genes related to diverse 

cellular processes. As a disease that is strongly 

associated with genetic abnormalities, the genome of 

BC is valuable for exploration. A large body of 

literature has reported good bioinformatics tools for BC, 

such as depression-related models, angiogenesis-related 

models, or lactate metabolism-related models [45–47]. 

However, no mitophagy-related signature of BC has 

been studied, which in our study showed excellent 

prognostic ability and was related to distinct immune 

cell infiltration patterns. 

 

Next, we performed a functional analysis of DEGs 

between the high- and low-risk subtypes to explore the 

putative pathways and functions of the 13-gene 

signature. GO enrichment revealed these DEGs were 

related with “chemokine-mediated signaling pathway” 

and “response to chemokine”. Chemokines are signal 

proteins or small cytokines that enhance the antitumor 

immune response by recruiting nearby immune cells 

[48]. For example, B cells can be activated by CXCR5, 

and T and NK cells can be induced to be enriched in 

tumors by CXCL9/10/11 [49]. Previous evidence has 

confirmed the vital roles of chemokines in the 

progression of BC, such as the overexpression of 

chemokines in mammary fibroblasts regulated by 

MEKK1, which can form a TME that supports the 

migration of BC cells [50], as well as the promotion of 

migration of ING4-deficient BC cells induced by 

CXCL10 chemokines [51]. Furthermore, previous 

studies have reported that chemokines are closely 

related to M1/M2 polarization, which can further 

promote tumor development [52]. Our GO analysis 

revealed a possible connection between chemokines, 

TME, and BC progression. 

 
KEGG enrichment showed significant enrichment of 

“viral protein interaction with cytokine and cytokine 

receptor” and “NF-kappa B signaling pathway”. 

Research of M.SR et al. suggests NF-kB plays an 

essential role in antitumor immunity. NF-kB is 

important for the formation of B lymphoid tissues and 

for the differentiation and maturation of B cells. 

Malfunctioning of NF-kB may decrease immuno-

genicity owing to the multifaceted role of this 

transcription factor in immunity [53]. Abundant 

evidence has demonstrated the positive functions of the 

NF-kB signaling pathway in promoting BC progression. 

Interestingly, Yi et al. reported that lncRNA lnc-

SLC4A1-1 can induce BC development by activating 

the CXCL8 and NF-kB signaling pathways [54]. 

Combined with our functional enrichment analysis, we 

propose that there must be some crosstalk between 

chemokines, the NF-kB signaling pathway, and BC. 

Subsequently, we explored whether there was a 

connection between mitophagy, NF-kB, and BC. 

However, this connection has not yet been explored but 

we obtained some interesting findings. Zhao et al. 

reported that metformin could rescue mitophagy in high 

glucose-challenged human renal epithelial cells by 

downregulating the NF-kB signaling pathway [55]. 

Further studies will be conducted to address these 

questions. In addition, the GSEA results showed that 

“cell cycle” and “homologous recombination” were 

enriched pathways in the high-risk group. In the low-

risk group, the top 5 enriched pathways were “cytokine-

cytokine receptor interaction,” “neuroactive ligand 

receptor interaction,” “hematopoietic cell lineage,” 

“chemokine signaling pathway” and “primary 

immunodeficiency”. These results suggest that the 13 

genes might influence the tumorigenesis and 

progression of BC through immune and tumor-related 

signaling pathways. 

 

TME plays a vital role in BC immunotherapy [56, 57]. 

Analysis of TME may help us to better understand how 

mitophagy influences the outcomes of patients with BC. 

Therefore, we assessed the proportion of various 

immune cells in BC using six commonly used 

algorithms. In low-risk patients, the TME was 

significantly infiltrated by B cells, DC, iDC, CD4+T 

cells, mast cells, CD8+T cells, neutrophils, pDC, T 

helper cells, Tfh, and TIL. These immune cells can 

affect BC development by regulating the antitumor 

immune response. Further studies revealed that CCR, 

MHC class I, checkpoint, cytolytic activity, HLA, 

parainflammation, T cell co-stimulation, inflammation 

promotion, and type II IFN response were enriched in 

the low-risk group. In addition, we evaluated the 

effectiveness of certain chemotherapies for different 

subtypes of BC. The results revealed that low-risk 

patients had lower estimated IC50s for five 
chemotherapy drugs (5-Fluorouracil, doxorubicin, 

erlotinib, GSK-650394, and salbrinal) than that of high-

risk patients. Moreover, high-risk patients were more 
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sensitive to AKT inhibitor VIII, JNK inhibitor VIII, and 

rapamycin, suggesting that high-risk patients can 

benefit from these chemotherapeutic agents. These 

results have the potential to guide therapy selection for 

each patient with BC. 

 

Our study provides an exhaustive summary of all the 

possible mechanisms and gene alterations of the 13-gene 

signature based on DEGs of mitophagy-related tumor 

classification in BC, provides a solid foundation for 

future research, and can guide prognostic biomarkers of 

therapeutic strategies for patients with BC. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. Mitophagy-related genes. 

ATG12 

ATG5 

CSNK2A1 

CSNK2A2 

CSNK2B 

FUNDC1 

MAP1LC3A 

MAP1LC3B 

MFN1 

MFN2 

MTERF3 

PGAM5 

PINK1 

PRKN 

RPS27A 

SQSTM1 
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TOMM20 

TOMM22 

TOMM40 

TOMM5 

TOMM6 

TOMM7 

TOMM70 

UBA52 

UBB 

UBC 

ULK1 

VDAC1 

 


