Research Paper Volume 14, Issue 14 pp 5855—5877
Protective effect of Astragalus membranaceus and Astragaloside IV in sepsis-induced acute kidney injury
- 1 Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
Received: October 30, 2021 Accepted: July 11, 2022 Published: July 20, 2022
https://doi.org/10.18632/aging.204189How to Cite
Copyright: © 2022 Tang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Background: Acute kidney injury (AKI) is the most common target organ damage in sepsis. Sepsis-associated AKI (SA-AKI) may be characterized by damage to the renal tubular epithelium. In this study, the pharmacological mechanisms of Astragalus membranaceus and its active monomer Astragaloside IV (AS-IV) were predicted based on a network pharmacology approach and validated both in vitro and in vivo using the SA-AKI model.
Method: We constructed an in vivo sepsis model using a mouse cecum ligation puncture (CLP) and HK-2 cells were treated with lipopolysaccharide (LPS) to mimic Gram (–) induced sepsis to assess the renal-protective efficacy of Astragalus membranaceus and AS-IV.
Results: The findings demonstrated that Astragalus membranaceus and AS-IV attenuate renal tubular injury in mice with polymicrobial sepsis, including vacuolization, loss of brush border, mitochondrial ultrastructural changes, and increased staining of kidney injury molecule-1 (KIM-1). AS-IV protected human proximal tubular epithelial (HK-2) cells against LPS induced cell viability loss. Both Astragalus membranaceus and AS-IV activated the PI3K/AKT pathway both in vitro and in vivo, as shown by Western blot and immunohistochemistry analysis.
Conclusion: The findings demonstrate that Astragalus membranaceus and AS-IV protect against sepsis-induced kidney tubular injury by activating the PI3K/AKT pathway.