Toxic Environmental Pollutants Linked to Faster Aging and Health Risks in U.S. Adults
03-05-2025“Environmental chemical exposures represent a key modifiable risk factor impacting human health and longevity, and our findings provide evidence for associations between several environmental exposures and epigenetic aging in a large sample representative of the US adult population.”
Listen to an audio version of this press release
BUFFALO, NY — March 5, 2025 — A new research paper was published in Aging (Aging-US) on February 11, 2025, Volume 17, Issue 2, titled “Exposome-wide association study of environmental chemical exposures and epigenetic aging in the national health and nutrition examination survey.”
First author Dennis Khodasevich and corresponding author Andres Cardenas from Stanford University, and colleagues from other U.S. institutions, studied how exposure to harmful chemicals in the environment affects aging. Using data from the National Health and Nutrition Examination Survey (NHANES), they discovered that cadmium, lead, and cotinine are linked to faster biological aging, a process that can increase the risk of age-related diseases.
The study analyzed data from 2,346 U.S. adults aged 50 to 84 who participated in a national health survey. Researchers tested their blood and urine for 64 different chemicals, including metals, pesticides, and industrial pollutants. They assessed how these exposures influenced eight different epigenetic aging markers—biological clocks that measure how fast a person’s body is aging at the DNA level.
"We harnessed data from the National Health and Nutrition Examination Survey 1999-2000 and 2001-2002 cycles to examine exposome-wide associations between environmental exposures and epigenetic aging."
The strongest effects were linked to cadmium, a toxic metal found in cigarette smoke and some foods. People with higher levels of cadmium in their blood showed signs of accelerated aging. Higher levels of cotinine, a chemical related to tobacco exposure, were also linked to increased biological age, reinforcing the harmful effects of smoking. Additionally, lead exposure, a heavy metal found in old paint and contaminated water, was also associated with faster aging.
The researchers also found that some pollutants, including a type of PCB (PCB118) and a type of dioxin (HpCDD), were linked to slower biological aging. However, it is unclear if this fact is beneficial, as past research shows that slower aging in some cases can still be linked to health risks.
This study is one of the largest to investigate how pollution affects the aging process. Unlike previous research that focused on only a few chemicals, it examined a wide range of pollutants in a diverse group of people. The findings suggest that everyday exposure to toxic substances can speed up aging at the cellular level, increasing the risk of age-related diseases.
In summary, these findings raise concerns about how widespread environmental contaminants may accelerate aging and contribute to chronic diseases such as heart disease, cancer, and cognitive decline. Reducing exposure to toxic substances like cadmium and lead—found in cigarettes, polluted air, and contaminated food—could help slow biological aging and improve long-term health. These insights highlight the need for stronger environmental health policies to protect individuals from premature aging and disease.
Read the full paper: DOI: https://doi.org/10.18632/aging.206201
Corresponding author: Andres Cardenas — andresca@stanford.edu
Keywords: aging, epigenetic aging, environmental exposures, exposome, epigenetics
Click here to sign up for free Altmetric alerts about this article.
About Aging-US:
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at www.Aging-US.com and connect with us:
- X
- YouTube
- Spotify, or available wherever you listen to podcasts
For media inquiries, please contact media@impactjournals.com.