Senescence Program Modulated by BMAL1 via AP-1

10-16-2023

“In this study, we discovered that senescence alters the amplitude and period of core circadian clock components, most notably BMAL1 [...]”

Listen to an audio version of this press release

BUFFALO, NY- October 16, 2023 – A new research paper was published on the cover of Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 19, entitled, “BMAL1 modulates senescence programming via AP-1.”

Cellular senescence and circadian dysregulation are biological hallmarks of aging. Whether they are coordinately regulated has not been thoroughly studied. In this new study, researchers Sarah K. Jachim, Jian Zhong, Tamas Ordog, Jeong-Heon Lee, Aditya V. Bhagwate, Nagaswaroop Kengunte Nagaraj, Jennifer J. Westendorf, João F. Passos, Aleksey V. Matveyenko, and Nathan K. LeBrasseur from the Mayo Clinic in Rochester, Minnesota, hypothesized that BMAL1, a pioneer transcription factor and master regulator of the molecular circadian clock, plays a role in the senescence program. 

“Here, we demonstrate BMAL1 is significantly upregulated in senescent cells and has altered rhythmicity compared to non-senescent cells.”

Through BMAL1-ChIP-seq, they showed that BMAL1 is uniquely localized to genomic motifs associated with AP-1 in senescent cells. Integration of BMAL1-ChIP-seq data with RNA-seq data revealed that BMAL1 presence at AP-1 motifs is associated with active transcription. Finally, the researchers showed that BMAL1 contributes to AP-1 transcriptional control of key features of the senescence program, including altered regulation of cell survival pathways, and confers resistance to drug-induced apoptosis. 

“Overall, these results highlight a previously unappreciated role of the core circadian clock component BMAL1 on the molecular phenotype of senescent cells.”

Read the full study: DOI: https://doi.org/10.18632/aging.205112 

Corresponding Author: Nathan K. LeBrasseur - lebrasseur.nathan@mayo.edu 

Keywords: AP-1, circadian clock, cellular senescence, senolytic, transcription regulation

Sign up for free Altmetric alerts about this article:  https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.205112

About Aging-US:

Aging publishes research papers in all fields of aging research including but not limited, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan. The journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.

Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Please visit our website at www.Aging-US.com and connect with us:

For media inquiries, please contact media@impactjournals.com.