Hepatic Hydrogen Sulfide Levels are Reduced in Mouse Model of Progeria

07-11-2023

“To date, no studies have directly measured [hydrogen sulfide] production in Hutchinson-Gilford Progeria Syndrome [...]”

Listen to an audio version of this press release

BUFFALO, NY- July 11, 2023 – A new research paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 12, entitled, “Hepatic hydrogen sulfide levels are reduced in mouse model of Hutchinson-Gilford progeria syndrome.”

Hutchinson-Gilford progeria syndrome (HGPS) is a rare human disease characterized by accelerated biological aging. Current treatments are limited, and most patients die before 15 years of age. Hydrogen sulfide (H2S) is an important gaseous signaling molecule that is central to multiple cellular homeostasis mechanisms. Dysregulation of tissue H2S levels is thought to contribute to an aging phenotype in many tissues across animal models. Whether H2S is altered in HGPS is unknown.

In a new study, researchers Stephen E. Wilkie, Diana E. Marcu, Roderick N. Carter, Nicholas M. Morton, Susana Gonzalo, and Colin Selman from the University of Glasgow, University of Edinburgh, Saint Louis University, and Karolinska Institute investigated hepatic H2S production capacity and transcript, protein and enzymatic activity of proteins that regulate hepatic H2S production and disposal in a mouse model of HGPS (G609G mice, mutated Lmna gene equivalent to a causative mutation in HGPS patients). 

“This study was designed and undertaken due to the lack of understanding in the mechanistic targets of known treatments against HGPS and considering the positive association between H2S and longevity in model organisms.”

Here, the researchers employed the HGPS mouse model G609G to test the hypothesis that, in contrast to anti-ageing increases in H2S production, the accelerated aging typical of progeroid mice is associated with reduced hepatic H2S production. G609G mice were maintained on either regular chow (RC) or high fat diet (HFD). HFD has been previously shown to significantly extend lifespan of G609G mice, and compared to wild type (WT) mice maintained on RC. 

RC-fed G609G mice had significantly reduced hepatic H2S production capacity relative to WT mice, with a compensatory elevation in mRNA transcripts associated with several H2S production enzymes, including cystathionine-γ-lyase (CSE). H2S levels and CSE protein were partially rescued in HFD fed G609G mice. The data acquired here confirmed some aspects of the relevance of H2S in HGPS but raises more questions about the specific mechanisms at play.

“Regardless, the work presented here addresses an area of research that remains critically understudied and provides new evidence that the accelerated ageing phenotype observed in HGPS may be partially explained by a reduction in hepatic H2S levels.”

Read the full study: DOI: https://doi.org/10.18632/aging.204835 

Corresponding Authors: Colin Selman, Stephen E. Wilkie

Corresponding Emails: colin.selman@glasgow.ac.uk, stephen.wilkie@ki.se 

Keywords: progeria, hydrogen sulfide, high-fat diet, aging, ageing, lamin A

Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204835

About Aging-US:

Aging publishes research papers in all fields of aging research including but not limited, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan. The journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.

Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Please visit our website at www.Aging-US.com and connect with us:

For media inquiries, please contact media@impactjournals.com.