A Unique Pathogenic Mechanism of SARS-CoV-2 Omicron Variant: Selective Induction of Cellular Senescence

12-15-2023

“Our findings suggest that the omicron variant, in particular, leads to premature senescence in in vitro, ex vivo, and in lung tissue models.”

Listen to an audio version of this press release

BUFFALO, NY- December 15, 2023 – A new research paper was published on the cover of Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 23, entitled, “Uncovering a unique pathogenic mechanism of SARS-CoV-2 omicron variant: selective induction of cellular senescence.”

SARS-CoV-2 variants are constantly emerging with a variety of changes in the conformation of the spike protein, resulting in alterations of virus entry mechanisms. Solely omicron variants use the endosomal clathrin-mediated entry. 

In this new study, researchers Franziska Hornung, Nilay Köse-Vogel, Claude Jourdan Le Saux, Antje Häder, Lea Herrmann, Luise Schulz, Lukáš Radosa, Thurid Lauf, Tim Sandhaus, Patrick Samson, Torsten Doenst, Daniel Wittschieber, Gita Mall, Bettina Löffler, and Stefanie Deinhardt-Emmer from Jena University, Leibniz Centre for Photonics in Infection Research (LPI), University of California San Francisco, Klinik für Herz- und Thoraxchirurgie, and University Hospital Bonn investigated the influence of defined altered spike formations to study their impact on premature cellular senescence.

“In our study, in vitro infections of SARS-CoV-2 variants delta (B.1.617.2) and omicron (B.1.1.529) were analyzed by using human primary small alveolar epithelial cells and human ex vivo lung slices. We confirmed cellular senescence in human lungs of COVID-19 patients. Hence, global gene expression patterns of infected human primary alveolar epithelial cells were identified via mRNA sequencing.”

Solely omicron variants of SARS-CoV-2 influenced the expression of cell cycle genes, highlighted by an increased p21 expression in human primary lung cells and human ex vivo lungs. Additionally, an upregulated senescence-associated secretory phenotype (SASP) was detected. Transcriptomic data indicate an increased gene expression of p16, and p38 in omicron-infected lung cells. Significant changes due to different SARS-CoV-2 infections in human primary alveolar epithelial cells with an overall impact on premature aging could be identified. A substantially different cellular response with an upregulation of cell cycle, inflammation- and integrin-associated pathways in omicron infected cells indicates premature cellular senescence.

“This difference may be attributed to the distinct endocytic cell entry and intracellular pathways of the omicron variant when compared to the delta variant. The induction of cellular senescence in lung tissue following acute SARS-CoV-2 infection could potentially contribute to the reported cytokine storm and the development of long-COVID.”

Read the full study: DOI: https://doi.org/10.18632/aging.205297 

Corresponding Author: Stefanie Deinhardt-Emmer - stefanie.deinhardt-emmer@med.uni-jena.de 

Keywords: SARS-CoV-2, variant of concern, cellular senescence, lung airway cells

Sign up for free Altmetric alerts about this article:  https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.205297

About Aging-US:

The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.

The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)

Please visit our website at www.Aging-US.com and connect with us:

For media inquiries, please contact media@impactjournals.com.