A New Connection Between The Gut Microbiota and Prostate Inflammation in Aging Men

11-08-2023

“Creating a properly functioning intestinal microenvironment can significantly reduce the overall inflammation, which also affects the prostate.” 

Listen to an audio version of this press release

BUFFALO, NY- November 8, 2023 – A new research paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 20, entitled, “Tissue immunoexpression of IL-6 and IL-18 in aging men with BPH and MetS and their relationship with lipid parameters and gut microbiota-derived short chain fatty acids.”

Recent studies indicate that inflammation is one of the causes of the development of benign prostatic hyperplasia (BPH). Inflammation may result from past infections, metabolic disorders, but also from the state of functioning of the intestinal microbiota. 

In this new study, researchers Weronika Ratajczak, Maria Laszczyńska, Aleksandra Rył, Barbara Dołęgowska, Olimpia Sipak, Ewa Stachowska, Marcin Słojewski, and Anna Lubkowska from Poland’s Pomeranian Medical University and State University of Applied Sciences aimed to assess whether the diagnostic lipid parameters for metabolic syndrome and short-chain fatty acids (SCFAs) are related to the immunoexpression of interleukins in prostate tissue with benign hyperplasia. The study involved 103 men with BPH, who were divided into two groups depending on the presence of MetS. 

“We analysed tissue immunoexpression of two proinflammatory interleukins: IL-6, which is known to be involved in the development of BPH, and IL-18, which has not been analysed so far.”

The results of their study indicated that men with BPH + MetS in the stroma of the prostate have a significantly higher overall percentage of IL-6+ cells compared to men without MetS (p = 0.034). The analysis of IL-18 immunoexpression in prostate tissue indicated that in men with BPH + MetS, the glandular part of the prostate had a significantly higher percentage of cells with strong IL-18 expression (p = 0.040). They also noticed a relationship between tissue expression of IL-6 and IL-18 and lipid parameters (TG and HDL). 

“We conclude that lipid disorders occurring in men with BPH increase inflammation in the prostate gland. Moreover, it has also been demonstrated for the first time that, indirectly, through SCFAs, the gut microbiota can act to prevent or create an inflammatory microenvironment in the prostate gland.”

Read the full study: DOI: https://doi.org/10.18632/aging.205091

Corresponding Author: Anna Lubkowska

Corresponding Email: anna.lubkowska@pum.edu.pl 

Keywords: benign prostatic hyperplasia (BPH), metabolic syndrome (MetS), lipids, interleukin 6 (IL-6), interleukin 18 (IL-18), short-chain fatty acids

Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.https://doi.org/10.18632/aging.205091

About Aging-US:

Aging publishes research papers in all fields of aging research including but not limited, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan. The journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.

Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Please visit our website at www.Aging-US.com and connect with us:

For media inquiries, please contact media@impactjournals.com.