Abstract

Oligomeric Aβ42 is considered to play a harmful role in the pathophysiology of Alzheimer’s disease (AD). Prolonged exposure to oligomeric Aβ42 could induce neuronal damage including cellular senescence. Amelioration of Aβ42-induced cellular senescence has been considered as a promising strategy for the treatment of AD. Chromofungin, a chromogranin A-derived peptide, has displayed various biological functions in different types of cells and tissues. However, the effects of Chromofungin on oligomeric Aβ42-induced cellular senescence have not been previously reported. In the current study, we report a novel function of Chromofungin by showing that treatment with Chromofungin could ameliorate Aβ42-induced neurotoxicity in M17 neuronal cells. The Cell Counting Kit-8 (CCK-8) assay and the lactate dehydrogenase (LDH) release experiments revealed that 0.5 and 1 mM are the optimal concentrations of Chromofungin for cell culture in M17 cells. Challenging with oligomeric Aβ42 (5 μM) for 7 and 14 days led to a significant decrease in telomerase activity, which was rescued by Chromofungin dose-dependently. Additionally, the senescence-associated β-galactosidase (SA-β-gal) staining assay demonstrated that Chromofungin mitigated oligomeric Aβ42-induced cellular senescence. Correspondingly, treatment with Chromofungin reversed the gene expression of human telomerase reverse transcriptase (hTERT), telomeric repeat-binding factor 2 (TERF2), and p21 against oligomeric Aβ42 in M17 neurons. Interestingly, Chromofungin attenuated oligomeric Aβ42-induced oxidative stress (OS) in M17 cells by reducing the production of intracellular reactive oxygen species (ROS) but increasing the levels of intracellular superoxide dismutase (SOD). Importantly, the presence of Chromofungin reduced the expression of cyclooxygenase2 (COX-2) as well as the generation of prostaglandin E2 (PGE2). Transduction with Ad-COX-2 impaired the effects of Chromofungin on telomerase activity and the profile of cellular senescence. Our findings suggest that Chromofungin might act as a potential agent for the treatment of AD.