Abstract

The discovery of RNA methylation alterations associated with cancer holds promise for their utilization as potential biomarkers in cancer diagnosis, prognosis, and prediction. RNA methylation has been found to impact the immunological microenvironment of tumors, but the specific role of methylation-related genes (MRGs), particularly in breast cancer (BC), the most common cancer among women globally, within the tumor microenvironment remains unknown. In this study, we obtained data from TCGA and GEO databases to investigate the expression patterns of MRGs in both genomic and transcriptional domains in BC. By analyzing the data, we identified two distinct genetic groupings that were correlated with clinicopathological characteristics, prognosis, degree of TME cell infiltration, and other abnormalities in MRGs among patients. Subsequently, an MRG model was developed to predict overall survival (OS) and its accuracy was evaluated in BC patients. Additionally, a highly precise nomogram was created to enhance the practical usability of the MRG model. In low-risk groups, we observed lower TBM values and higher TIDE scores. We further explored how MRGs influence a patient’s prognosis, clinically significant characteristics, response to therapy, and the TME. These risk signatures have the potential to improve treatment strategies for BC patients and could be applied in future clinical settings. Moreover, they may also be utilized to determine prognosis and biological features in these patients.