Research Paper Volume 16, Issue 10 pp 8511—8523
LncRNA SH3BP5-AS1 promotes hepatocellular carcinoma progression by sponging miR-6838-5p and activation of PTPN4
- 1 Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
Received: December 20, 2023 Accepted: April 9, 2024 Published: May 16, 2024
https://doi.org/10.18632/aging.205811How to Cite
Copyright: © 2024 Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Background: Long noncoding RNAs (LncRNAs) have been demonstrated to have significant roles in the carcinogenesis of hepatocellular carcinoma (HCC). In this work, we sought to determine LncRNA SH3BP5-AS1’s function and mechanism in the emergence of HCC.
Results: First, we discovered that the advanced tumor stage was strongly correlated with high levels of LncRNA SH3BP5-AS1 expression in HCC. MiR-6838-5p expression was down-regulated and inversely correlated with SH3BP5-AS1 expression. Additionally, overexpression of SH3BP5-AS1 boosted cell invasion, migration, and proliferation. The oncogenic effects of the inhibitor of miR-6838-5p were eliminated when PTPN4 was suppressed, following the identification of PTPN4 as a direct target of miR-6838-5p. In addition, SH3BP5-AS1 promoted cellular glycolysis via miR-6838-5p sponging and PTPN4 activation. Lastly, by directly interacting to the promoter of SH3BP5-AS1, HIF-1α could control the transcription of the gene.
Conclusions: Our research suggests that SH3BP5-AS1 controls miR-6838-5p/PTPN4 in order to act as a new carcinogenic LncRNA during the growth of HCC cells.
Methods: The expression levels of SH3BP5-AS1, miR-6838-5p and PTPN4 were detected by qRT-PCR and Western blot. The effects of LncRNA SH3BP5-AS1/miR-6838-5p/PTPN4 on the proliferation, metastasis and glycolysis of HCC cells were clarified by experimental cellular functionality assays, cell derived xenograft and Glycolysis assay.