Abstract

Aim: This study determines to validate the mechanism of Shexiang Tongxin dropping pill (STDP) in attenuating coronary microembolization (CME) induced myocardial injury.

Methods: CME rat models were established and underwent corresponding treating. Gene chip analysis was performed in rat myocardial tissues for GO and KEGG enrichment analysis. The differentially expressed genes were detected by qRT-PCR. H&E staining and ELISA were used for pathological analysis and detection of troponin (cTnI) and Creatine Kinase Isoenzyme (CK-MB). Lipopolysaccharide (LPS) treated primary cardiomyocytes were used to mimic inflammatory in vitro models. Cell viability and apoptosis of cardiomyocytes were determined by MTT and flow cytometry. The expressions of inflammatory cytokines, apoptotic proteins and proteins related to the STAT3 signal pathway were detected by western blot. APOC1 mRNA expression was detected by qRT-PCR. Immunofluorescence (IF) was used for subcellular localization of p-STAT3 and the binding of APOC1 with STAT3 was verified using Co-IP.

Results: STDP can attenuate myocardial injury in CME rat models, and lead to decreased expression of APOC1 and suppressed STAT3 signal pathway. In vitro models found STDP can suppress the cell viability and cell apoptosis of primary cardiomyocytes, in addition to suppressing the secretions of IL-6, IL-1β and TNF-α, while the protective effect of STDP can be reversed by overexpression of APOC1. Co-IP found that APOC1 can bind STAT3 directly. APOC1 can increase p-STAT3 expression in the nucleus to activate the STAT3 signal pathway.

Conclusions: STDP can suppress APOC1 and STAT3 signal pathway to inhibit inflammation and cell apoptosis of cardiomyocytes. APOC1 may be one of the key regulatory factors in CME-induced myocardial injury.