Abstract

Disulfidptosis is a newly discovered mode of cell death. However, its biological mechanism in bladder cancer (BLCA) is still uncharacterized. In this investigation, we firstly examined the expression and mutation of disulfidptosis-related genes (DRGs) in BLCA. Two disulfidptosis phenotypes associated with DRGs expression patterns and immune cell infiltration were built. A disulfidptosis risk score signature was constructed based on ten differentially expressed genes (DEGs) between the disulfidptosis subtypes, which allowed patients to be stratified into high- and low-risk groups. We further confirmed that the disulfidptosis risk score signature has great power to predict prognosis, immune cell infiltration, and immunotherapy efficacy in BLCA. Additionally, we analyzed the differences in therapeutic sensitivities between high- and low-risk groups concerning targeted inhibitor therapy and immunotherapy. Analysis of single-cell RNA sequencing was conducted of the ten hub DRGs. Of the ten genes, we found that DUSP2 and SLCO1B3 were differentially expressed in BLCA tissues and adjacent normal tissues, and were markedly associated with patients’ prognosis. Functional experiments revealed that overexpression of DUSP2 or knockdown of SLCO1B3 significantly inhibited cell proliferation, migration, and invasion in BLCA cells. In all, we present a fresh disulfidptosis-related prognostic signature, which has a remarkable capacity to characterize the immunological landscape and prognosis of BLCA patients.