Abstract

Objective: To explore the relationships between S100A7 and the immune characteristics, tumor heterogeneity, and tumor stemness pan-cancer as well as the effect of S100A7 on chemotherapy sensitivity in breast cancer.

Methods: TCGA-BRCA and TCGA-PANCANCER RNA-seq data and clinical follow-up survival data were collected from the University of California Santa Cruz database. Survival analyses were performed to explore the relationship between S100A7 expression and pan-cancer prognosis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and Gene Set Enrichment Analysis (GSEA) were used to identify the potential pathways related to the differentially expressed genes in breast cancer. Spearman’s and Wilcoxon’s tests were used to investigate the relationships between S100A7 expression and immune characteristics, methylation, tumor heterogeneity, and tumor stemness. The potential functions of S100A7 and its influence on chemotherapy sensitivity in breast cancer were elucidated using reverse transcription-quantitative PCR, Cell Counting Kit-8 (CCK-8) assay, Transwell assay, and wound healing assay.

Results: S100A7 was highly expressed in most types of tumors and was associated with poor prognosis. S100A7 was closely associated with immunomodulators, immune checkpoint and immune cell infiltration. Further, S100A7 was related to tumor mutational burden, tumor heterogeneity, methylation and tumor stemness in breast cancer. High S100A7 expression was associated with the invasiveness, migration, proliferation and chemotherapy resistance of breast cancer cells in vitro experiments.

Conclusion: High S100A7 expression was related with poor prognosis and chemotherapy resistance in breast cancer, making it a potential immune and chemotherapy resistance biomarker.