Abstract

Hepatocellular carcinoma (HCC) is among the most common deadly tumors but still lacks specific biomarkers for diagnosis, prognosis, and treatment guidance. The COP9 signalosome (COPS) is an essential regulator of the ubiquitin conjugation pathway upregulated in various cancers. We evaluated the contributions of COPS subunits to HCC tumorigenesis and their utility for prognosis. We comprehensively evaluated the tumor expression pattern and tumorigenic functions of COPS subunits using The Cancer Genome Atlas (TCGA), The Human Protein Atlas and immunohistochemistry. Kaplan–Meier, Cox regression, ROC curve, and nomogram analyses were used to assess the predictive values of COPS subunits for clinical outcome. Expression levels of COPS subunits were significantly upregulated in HCC tissues, which predicted shorter overall survival (OS). Further, Cox regression analysis identified COPS5, COPS7B, and COPS9 as independent prognostic biomarkers for OS. High mutation rates were also found in COPS subunits. Functional network analysis indicated that COPS and neighboring genes regulate ‘protein neddylation’, ‘protein deneddylation’, and ‘protein ubiquitination’. The COPS PPI included strong interactions with p53, CUL1/2/3/4, and JUN. Moreover, the correlations between COPS subunit expression levels and tumor immune cell infiltration rates were examined using TIMER, TISIDB, ssGSEA, and ESTIMATE packages. COPS subunits expression levels were positively correlated with specific tumor immune cell infiltration rates, immunoregulator expression levels, and microsatellite instability in HCC. Finally, knockout of COPS6 and COPS9 in HCC cells reduced while overexpression enhanced proliferation rate and metastasis capacity. Our study revealed that COPS potential biomarker for unfavorable HCC prognosis and indicators of immune infiltration, tumorigenicity, and metastasis.