Abstract

Background: Breast cancer (BC) is a heterogeneous tumor with a variety of etiology and clinical features. Antibody-dependent cell phagocytosis (ADCP) is the last step of immune checkpoint inhibition (ICI), and macrophages detect and recognize tumor cells, then destroy and engulf tumor cells. Despite the large number, negative regulators that inhibit phagocytic activity are still a key obstacle to the full efficacy of ICI.

Patients and methods: An ADCP-related risk score prognostic model for risk stratification as well as prognosis prediction was established in the Cancer Genome Atlas (TCGA) cohort. The predictive value of ADCP risk score in prognosis and immunotherapy was also further validated in the TCGA along with International Cancer Genome Consortium cohorts. To promote the clinical application of the risk score, a nomogram was established, with its effectiveness verified by different methods.

Results: In this study, the genes collected from previous studies were defined as ADCP-related genes. In BC patients, two ADCP-related subtypes were identified. The immune characteristics and prognostic stratification were significant different between them.

Conclusions: We identified two subtypes associated with ADCP gene expression in breast cancer. They have significant differences in immune cells, molecular functions, HLA family genes, immune scores, stromal scores, and inflammatory gene expression, which have important guiding significance for the selection of clinical treatment methods. At the same time, we constructed a risk model based on ADCP, and the risk score can be used as a good indicator of prognosis, providing potential therapeutic advantages for chemotherapy and immunotherapy, thus helping the clinical decision-making of BC patients.