Abstract

Background: Testicular cancer is fairly rare but can affect fertility in adult males. Leucine-rich repeats- and WD repeat domain-containing protein 1 (LRWD1) is a sperm-specific marker that mainly affects sperm motility in reproduction. Our previous study demonstrated the impact of LRWD1 on testicular cancer development; however, the underlying mechanisms remain unclear.

Methods: In this study, various plasmids associated with LRWD1 and miR-320a manipulation were used to explore the roles and regulatory effects of these molecules in NT2D1 cellular processes. A Dual-Glo luciferin-luciferase system was used to investigate LRWD1 transcriptional activity, and qRT-PCR and western blotting were used to determine gene and protein expression.

Results: The results suggested that miR-320a positively regulated LRWD1 and positively correlated with NT2D1 cell proliferation but negatively correlated with cell migration and invasion ability. In addition, the miRNA-ribonucleoprotein complex AGO2/FXR1 was shown to be essential in the mechanism by which miR-320a regulates LRWD1 mRNA expression. As miR-320a was required to regulate LRWD1 expression through the AGO2 and FXR1 complex, eEF2 and eLF4E were also found to be involved in miR-320a increasing LRWD1 expression. Furthermore, miR-320a and LRWD1 were responsive to oxidative stress, and NRF2 was affected by the presence of miR-320a in response to ROS stimulation.

Conclusions: This is the first study showing the role of miR-320a in upregulating the testicular cancer-specific regulator LRWD1 and the importance of the AGO2/FXR1 complex in miR-320a-mediated upregulation of LRWD1 during testicular cancer progression.