Abstract

Background: Yangyinghuoxue decoction (YYHXD) is a Traditional Chinese medicine (TCM) compound with satisfactory clinical efficacy in the treatment of hepatic fibrosis (HF). However, the pharmacological molecular mechanisms of YYHXD in the treatment of hepatic fibrosis have not yet been clarified.

Objective: To determine the pharmacological mechanisms of YYHXD for the treatment of hepatic fibrosis via network pharmacology analysis combined with experimental verification.

Methods: First, the bioactive ingredients and potential targets of YYHXD and HF-related targets were retrieved from the online databases and literatures. Next, the “herb-ingredient-target-disease” network and PPI network were constructed for topological analyses and key active compounds and targets screening. Enrichment analyses were performed to identify the critical biological processes and signaling pathways. Then, the molecular docking experiment was performed to initially validate the network pharmacology prediction results. Finally, the antifibrotic effect and pharmacological mechanisms of YYHXD were investigated in CCl4 induced liver fibrosis in rats.

Results: In total, 141 active compounds in YYHXD, 637 YYHXD-related targets and 1598 liver fibrosis-related targets were identified. Among them, 69 overlapped targets were finally obtained. Network analysis screened 5 critical bioactive components and 34 key targets. Functional enrichment analysis indicated that YYHXD obviously influenced biological processes such as oxidative stress, cellular inflammation and hepatocyte apoptosis and signaling pathways such as PI3K-Akt, Apoptosis, and JAK-STAT in the treatment of HF. The molecular docking results suggested that the YYHXD may have a direct impact on the PI3K-Akt signaling pathway. Further, in vivo experiment indicated that YYHXD treatment not only reduced liver injury and protected liver function, but also decrease the apoptosis of hepatic parenchyma cells, reducing inflammatory and attenuating oxidative stress. Moreover, YYHXD significantly attenuated the upregulation of target proteins enriched in PI3K signaling pathway, including P-PI3K, P-Akt1, HSP90, MYC, p53.

Conclusions: The mechanisms of YYHXD against liver fibrosis were involved in multiple ingredients, multiple targets and multiple signaling pathways. The PI3K/Akt pathway could be the most important pharmacological mechanism of YYHXD therapy for liver fibrosis.