Abstract

Cuproptosis is a manner of mitochondrial cell death induced by copper. However, cuproptosis modulators’ molecular processes in intervertebral disc degeneration (IDD) are still unclear. To better understand the processes of cuproptosis regulators in IDD, a thorough analysis of cuproptosis regulators in the diagnostic biomarkers and subtype determination of IDD was conducted. Then we collected clinical IDD samples and successfully established IDD model in vivo and in vitro, and carried out real-time quantitative polymerase chain reaction (RT-qPCR) validation of significant cuproptosis modulators. Totally we identified 8 crucial cuproptosis regulators in the present research. Using a random forest model, we isolated 8 diagnostic cuproptosis modulators for the prediction of IDD risk. Then, based on our following decision curve analysis, we selected the five diagnostic cuproptosis regulators with importance scores greater than two and built a nomogram model. Using a consensus clustering method, we divided IDD patients into two cuproptosis clusters (clusterA and clusterB) based on the important cuproptosis regulators. Additionally, each sample’s cuproptosis value was evaluated using principal component analysis in order to quantify the cuproptosis clusters. Patients in clusterB had higher cuproptosis scores than patients in clusterA. Moreover, we found that clusterB was involved in the immunity of natural killer cell, while clusterA was related to activated CD4 T cell, activated B cell, etc. Notably, cuproptosis modulators detected by RT-qPCR showed generally consistent expression levels with the bioinformatics results. To sum up, cuproptosis modulators play a crucial role in the pathogenic process of IDD, providing biomarkers and immunotherapeutic approaches for IDD.