Research Paper Volume 15, Issue 23 pp 13865—13875
S14G-humanin alleviates acute lung injury by inhibiting the activation of NF-κB
- 1 Department of ICU, The First People’s Hospital of Linping District, Hangzhou 311100, China
Received: June 15, 2023 Accepted: September 26, 2023 Published: December 4, 2023
https://doi.org/10.18632/aging.205267How to Cite
Copyright: © 2023 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Acute lung injury (ALI) is characterized by severely damaged alveoli and blood vessels, seriously affecting the health of patients and causing a high mortality rate. The pathogenesis of ALI is complex, with inflammatory reactions and oxidative stress (OS) mainly involved. S14G humanin (HNG) is derived from humanin (HN), which is claimed with promising anti-inflammatory functions. Herein, the protective influence of HNG on ALI will be explored in a mouse model. The ALI model was established in mice via intratracheal instillation of 3 mg/kg LPS, followed by an intraperitoneal injection of 3 and 6 mg/kg HNG, respectively. Thicker alveolar walls, aggravated neutrophil infiltration, and increased wet weight/dry weight (W/D) ratio were observed in ALI mice, accompanied by an aggravated apoptotic state, all of which were notably alleviated by HNG. Furthermore, increased number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF), elevated secretion of inflammatory cytokines, enhanced reactive oxygen species (ROS) and Malondialdehyde (MDA) levels, and declined superoxide dismutase-2 (SOD2) levels were observed in ALI mice, which were markedly ameliorated by HNG. Moreover, the upregulated levels of NOD-like receptor family pyrin domain containing 3 (NLRP3), caspase-1, and caspases cleave gasdermin D N/caspases cleave gasdermin D FL (GSDMD N/GSDMD FL) in ALI mice were signally repressed by HNG. Lastly, the upregulation of Toll-like receptor 4 (TLR4) and p-p65/p65, and downregulation of IκB-α observed in ALI mice were sharply reversed by HNG. Collectively, HNG alleviated the ALI in mice by inhibiting the activation of nuclear factor kappa B (NF-κB) signaling.