Research Paper Volume 15, Issue 22 pp 13411—13421
Regulatory mechanisms of miR-212-3p on the secretion of inflammatory factors in monocyte-macrophages and the directed differentiation into osteoclasts in ankylosing spondylitis
- 1 Department of Rheumatic Immunology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
Received: September 8, 2021 Accepted: October 15, 2023 Published: November 28, 2023
https://doi.org/10.18632/aging.205249How to Cite
Copyright: © 2023 Xie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
To explore the mechanisms of action of micro ribonucleic acid (miR)-212-3p in the secretion of inflammatory factors in monocyte-macrophages and the directed differentiation into osteoclasts (OCs) in ankylosing spondylitis (AS), proteoglycan was used to establish an AS mouse model. The mouse monocyte-macrophages were cultured in vitro, transfected with miR-212-3p mimic, and added with phosphorylated-extracellular signal-regulated kinase (p-ERK)1/2 agonist Ro67-7476 in vitro. After the cells were transfected with the miR-212-3p mimic in each group, the expressions of p-ERK1/2, matrix metalloproteinase-1 (MMP-1), MMP-3, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) significantly declined, whereas those of tartrate-resistant acid phosphatase (TRAP), calcitonin, and p-nuclear factor of activated T cell 1 (NFATC1) significantly rose. After Ro67-7476 was added, the protein expressions of p-ERK1/2, MMP-1, MMP-3, IL-1β, and TNF-α were significantly increased in each group, but they displayed decreasing trends in cells transfected with the miR-212-3p mimic. In contrast, the protein expressions of TRAP, calcitonin, and p-NFATC1 declined, but they showed increasing trends in cells transfected with the miR-212-3p mimic. miR-212-3p can, through inhibiting the phosphorylation of p-ERK1/2, prevent the aggregation of macrophages and the secretion of inflammatory factors. It also up-regulates the expression of OC marker proteins to facilitate the differentiation and maturation of OCs, ultimately relieving AS-induced inflammation and new bone growth-induced joint neoplasm.