Abstract

This study aimed to investigate the differential expression of serum microRNAs in cognitive normal subjects (NC), patients with mild cognitive impairment (MCI), and patients with Alzheimer’s disease (AD), with the objective of identifying potential diagnostic biomarkers. A total of 320 clinical samples, including 32 MCI patients, 288 AD patients, and 288 healthy controls, were collected following international standards. The expression of microRNAs in serum was analyzed using the Agilent human microRNA oligonucleotide microarray, and bioinformatics methods were employed to predict target genes and their involvement in AD-related pathways. Among the 122 microRNAs screened, five microRNAs (hsa-miR-208a-5p, hsa-miR-125b-1-3p, hsa-miR-3194-3p, hsa-miR-4652-5p, and hsa-miR-4419a) exhibited differential expression and met quality control standards. Bioinformatics analysis revealed that the target genes of these microRNAs were involved in multiple AD-related pathways, which changed with disease progression. These findings demonstrate significant differences in serum microRNA expression between NC, MCI, and AD patients. Three microRNAs were identified as potential candidates for the development of diagnostic models for MCI and AD. The results highlight the crucial role of microRNAs in the pathogenesis of AD and provide a foundation for the development of novel therapeutic strategies and personalized treatment approaches for AD. This study contributes to the understanding of AD at the molecular level and offers potential avenues for early diagnosis and intervention in AD patients.