Abstract

Background: The N-6-adenine-specific DNA methyltransferase 1 (N6AMT1) is the only writer responsible for DNA 6mA modifications. At present, its role in cancer is still unclear, and further systematic pan-cancer analysis is needed to explore its value in diagnosis, prognosis and immunological function.

Methods: The subcellular localization of N6AMT1 was explored by UniProt and HPA database. The expression data and prognosis data of N6AMT1 were downloaded from the UCSC (cohort: TCGA pan-cancer), and the diagnostic and prognostic value of N6AMT1 in pan-cancer was explored. The value of N6AMT1-guided immunotherapy was explored through three cohorts (GSE168204, GSE67501 and IMvigor210 cohort). The correlation between N6AMT1 expression and tumor immune microenvironment was explored using CIBERSORT and ESTIMATE calculation methods, combined with TISIDB database. The biological role of N6AMT1 in specific tumors was explored by GSEA method. Finally, we explored chemicals affecting N6AMT1 expression through the CTD.

Results: N6AMT1 is mainly localized in the nucleus and differentially expressed in 9 cancer types. In addition, N6AMT1 showed early diagnostic value in 7 cancers and showed potential prognostic value in multiple cancer types. We also demonstrated that N6AMT1 expression was significantly associated with immunomodulator-related molecules, infiltration of lymphocyte subsets, and biomarkers of immunotherapy response. Furthermore, we show that N6AMT1 is differentially expressed in the immunotherapy cohort. Finally, we explored 43 chemicals that can affect N6AMT1 expression.

Conclusions: N6AMT1 has shown excellent diagnostic and prognostic capabilities in a variety of cancers, and it may reshape the tumor microenvironment and contribute to the ability to predict response to immunotherapy.