Research Paper Volume 15, Issue 13 pp 6400—6428
Exploring Cancer Dependency Map genes and immune subtypes in colon cancer, in which TIGD1 contributes to colon cancer progression
- 1 Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
- 2 Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- 3 Department of Nutrition, The First Affiliated Hospital of Nanchang University, Nanchang, China
Received: April 26, 2023 Accepted: June 19, 2023 Published: July 13, 2023
https://doi.org/10.18632/aging.204859How to Cite
Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Background: Tumour-dependent genes identified in CRISPR-Cas9 screens have been widely reported in Cancer Dependency Maps (CDMs). CDM-derived tumour-dependent genes play an important role in tumorigenesis and progression; however, they have not been investigated in colon cancer (CC).
Methods: CDM genes overexpressed in CC were identified from the TCGA-COAD dataset and CDM platform. A CDM signature and prognostic nomogram were constructed by Lasso Cox regression and multivariate Cox analyses. A weighted correlation network analysis (WGCNA) and consensus clustering were used to define coexpressed genes with CDM risk scores and to determine two new immune subtypes. A comprehensive investigation was performed between the two subtypes and immune regulation, the immune microenvironment and the impact of immunotherapy.
Results: First, 1304 overexpressed CDM genes were identified. Then, a CDM signature with five cancer-dependent genes (MMS19, NOP14, POLRMT, SNAPC5 and TIGD1) and a prognostic nomogram were constructed, and they demonstrated robust predictive performance and a close relationship with clinical characteristics in different CC datasets. Patients with high CDM risk scores showed worse survival outcome and weaker response to chemotherapy. Additionally, TIGD1 genes were oncogenes that affected the CC cell cycle, according to cell functional experiments that involved the suppression of the TIGD1 gene. Furthermore, WGCNA and consensus clustering were used to define coexpressed genes with CDM risk scores and to determine two new immune subtypes. Finally, systematic investigations were conducted with the relationship between the CDM subtypes and immune regulation.
Conclusions: This study constructed a CDM signature consisting of five risk genes that predict survival in CC patients. In addition, the immune subtypes provided valuable insights into immunotherapy for CC patients. TIGD1, as an oncogene, is independent prognostic factors for CC, and contributes to CC progression.