Research Paper Volume 15, Issue 13 pp 6225—6254
An integrated bioinformatic investigation of focal adhesion-related genes in glioma followed by preliminary validation of COL1A2 in tumorigenesis
- 1 Department of Neurosurgery, The First People’s Hospital of Fuzhou City, Fuzhou 344099, Jiangxi, P.R. China
- 2 College of Nursing and Rehabilitation, Fuzhou Medical College of Nanchang University, Fuzhou 344099, Jiangxi, P.R. China
Received: April 10, 2023 Accepted: June 10, 2023 Published: June 22, 2023
https://doi.org/10.18632/aging.204834How to Cite
Copyright: © 2023 Yao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Focal adhesions (FAs) allow cells to contact the extracellular matrix, helping to maintain tension and enabling signal transmission in cell migration, differentiation, and apoptosis. In addition, FAs are associated with changes in the tumor microenvironment (TME) that lead to malignant progression and drug resistance in tumors. However, there are still few studies on the comprehensive analysis of focal adhesion-related genes (FARGs) in glioma. Expression data and clinical information of glioma samples were downloaded from public databases. Two distinct molecular subtypes were identified based on FARGs using an unsupervised consensus clustering algorithm. A scoring system consisting of nine FARGs was constructed using integrated LASSO regression and multivariate Cox regression. It not only has outstanding prognostic value but also can guide immunotherapy of glioma patients, which was verified in TCGA, CGGA, GSE16011, and IMvigor210 cohorts. The results of bioinformatics analysis, immunohistochemistry staining, and western blotting all revealed that the expression of COL1A2 was up-regulated in glioblastoma and related to poor prognosis outcomes in patients from public datasets. COL1A2 promotes the proliferation, migration, and invasion of glioblastoma cells. A positive correlation between COL1A2 and CD8 was determined in GBM specimens from eight patients. Moreover, the results of cell co-cultured assay showed that COL1A2 participated in the killing of GBM cells by Jurkat cells. Our study indicates that the FARGs have prominent application value in the identification of molecular subtypes and prediction of survival outcomes in glioma patients. Bioinformatics analysis and experimental verification provide a direction for further research on FARGs.