Abstract

Background: Immunogenic cell death (ICD) could activate innate and adaptive immune response. In this work, we aimed to develop an ICD-related signature in uveal melanoma (UVM) patients and facilitate assessment of their prognosis and immunotherapy.

Methods: A set of machine learning methods, including non-negative matrix factorization (NMF) method and least absolute shrinkage and selection operator (LASSO) logistic regression model, and bioinformatics analytic tools were integrated to construct an ICD-related risk score (ICDscore). CIBERSORT and ESTIMATE algorithms were used to evaluate the infiltration of immune cells. The Genomics of Drug Sensitivity in Cancer (GDSC), cellMiner and tumor immune dysfunction and exclusion (TIDE) databases were used for therapy sensitivity analyses. The predictive performance between ICDscore with other mRNA signatures was also compared.

Results: The ICDscore could predict the prognosis of UVM patients in both the training and four validating cohorts. The ICDscore outperformed 19 previously published signatures. Patients with high ICDscore exhibited a substantial increase in immune cell infiltration and expression of immune checkpoint inhibitor-related genes, leading to a higher response rate to immunotherapy. Furthermore, the downregulation of poly (ADP-ribose) polymerase family member 8 (PARP8), a critical gene involved in the development of the ICDscore, resulted in decreased cell proliferation and slower migration of UVM cells.

Conclusion: In conclusion, we developed a robust and powerful ICD-related signature for evaluating the prognosis and benefits of immunotherapy that could serve as a promising tool to guide decision-making and surveillance for UVM patients.