Abstract

Background: Starving intratumoral microenvironment prominently alters genic profiles including long non-coding RNAs (lncRNAs), which further regulate bladder cancer (BCa) malignant biological properties, such as invasion and migration.

Methods: Transcriptome RNA-sequencing data of 414 BCa tumor tissues and 19 normal tissues were obtained from TCGA database and paired samples of 132 BCa patients. A chain of in vitro validations such as qPCR, migration and invasion assays were performed to reveal the clinical relevance of AC011472.4 and AL157895.1.

Results: A total of 11 lncRNAs were identified as starvation-related lncRNAs, of which AC011472.4 and AL157895.1 were relevant to overall survival of BCa patients. Besides, a starvation-related risk score model was established based on the levels of AC011472.4 and AL157895.1. BCa patients with higher levels of AL157895.1 were divided into the high-risk group and usually obtained higher mortality rate, but AC011472.4 was contrary. AL157895.1 expressed highly in BCa cell lines and tumour tissues, especially in patients with the advanced grade, stage and T-stage, while AC011472.4 showed the reversed result. Moreover, increased level of AL157895.1 was remarkably correlated to T-stage, muscle invasion status and distant metastasis. SiRNAs-mediated silence of AC011472.4 and AL157895.1 respectively increased and diminished invasion and migration properties of BCa cells.

Conclusions: In this study, we highlight the significant roles of AC011472.4 and AL157895.1 on evaluating prognoses of BCa patients and validate their correlation with various clinical parameters. These findings provide an appropriate risk score model for BCa clinical decision making.