Research Paper Volume 15, Issue 1 pp 53—69
miR-6742-5p regulates the invasion and migration of lung adenocarcinoma cells via mediating FGF8/ERK12/MMP9/MMP2 signaling pathway
- 1 Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
- 2 Department of General Practice, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
Received: May 28, 2021 Accepted: August 22, 2022 Published: January 10, 2023
https://doi.org/10.18632/aging.204277How to Cite
Copyright: © 2023 Song and Xing. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Background: microRNAs (miRNAs) are involved in the progression of Lung adenocarcinoma (LUAD), however, the functions of miR-6742-5p in LUAD remains unknown, thereby this study was carried on.
Methods: The mRNA and miRNA expression data from the LUAD and normal control were obtained from Gene Expression Omnibus (GEO) database, TargetScan and mirDIP were applied to predict the relationship between miR-6742-5p and FGF8.Q-PCR, western blot, dual-luciferase, wound Healing and transwell assays were performed to test the functions of miR-6742-5p in LUAD.
Results: Bioinformatics analysis and dual-luciferase identified FGF8 is the target-gene of miR-6742-5p, which is declined in LUAD of human tissues and cell lines, and miR-6742-5P OE suppressed the progression of LUAD in nude mice. MiR-6742-5p OE and KD suppressed or increased the abilities of LUAD’ metastasis tested by wound healing and transwell assays H522 and PC-9 cells, these effects about miR-6742-5p OE were reversed by FGF8; miR-6742-5p OE, KD inhibited and increased the expression of FGF8 as its downstream p-ERK1/2, MMP-2/-9, these results were corrected by ERK1/2 inhibitor: Ro 67-7476; the miR-6742-5p KD increased the migrated and invaded cells and suppressed by MMPs inhibitor: S3304. These results identified the negative correlation of miR-6742-5p with FGF8-ERK1/2 signal pathway in LUAD progression.
Conclusions: We conclude that miR-6742-5p might be a regulator of LUAD progression by targeting FGF8/ERK1/2/MMPs signaling pathway, which provides a novel therapeutic target for LUAD.