Research Paper Volume 14, Issue 6 pp 2628—2644
Five-gene signature predicts acute kidney injury in early kidney transplant patients
- 1 Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua 321000, China
Received: December 18, 2020 Accepted: September 18, 2021 Published: March 23, 2022
https://doi.org/10.18632/aging.203962How to Cite
Copyright: © 2022 Zhai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Patients with acute kidney injury (AKI) show high morbidity and mortality, and a lack of effective biomarkers increases difficulty in its early detection. Weighted gene co-expression network analysis (WGCNA) detected a total of 22 gene modules and 6 miRNA modules, of which 4 gene modules and 3 miRNA modules were phenotypically co-related. Functional analysis revealed that these modules were related to different molecular pathways, which mainly involved PI3K-Akt signaling pathway and ECM-receptor interaction. The brown modules related to transplantation mainly involved immune-related pathways. Finally, five genes with the highest AUC were used to establish a diagnosis and prediction model of AKI. The model showed a high area under curve (AUC) in the training set and validation set, and their prediction accuracy for AKI was as high as 100%. Similarly, the prediction accuracy of AKI after 24 h in the 0 h transplant sample was 100%. This study may provide new features for the diagnosis and prediction of AKI after kidney transplantation, and facilitate the diagnosis and drug development of AKI in kidney transplant patients.