Abstract

In humans, aging, triggers increased plasma concentrations of triglycerides, cholesterol, low-density lipoproteins and lower capacity of high-density lipoproteins to remove cellular cholesterol. Studies in rodents showed that aging led to cholesterol accumulation in the liver and decrease in the brain with reduced cholesterol synthesis and increased levels of cholesterol 24-hydroxylase, an enzyme responsible for removing cholesterol from the brain. Liver diseases are also related to brain aging, inducing changes in cholesterol metabolism in the brain and liver of rats. It has been suggested that late onset Alzheimer’s disease is associated with metabolic syndrome. Non-alcoholic fatty liver is associated with lower total brain volume in the Framingham Heart Study offspring cohort study. Furthermore, disorders of cholesterol homeostasis in the adult brain are associated with neurological diseases such as Niemann-Pick, Alzheimer, Parkinson, Huntington and epilepsy. Apolipoprotein E (apoE) is important in transporting cholesterol from astrocytes to neurons in the etiology of sporadic Alzheimer’s disease, an aging-related dementia. Desmosterol and 24S-hydroxycholesterol are reduced in ApoE KO hypercholesterolemic mice. ApoE KO mice have synaptic loss, cognitive dysfunction, and elevated plasma lipid levels that can affect brain function. In contrast to cholesterol itself, there is a continuous uptake of 27- hydroxycholesterol in the brain as it crosses the blood-brain barrier and this flow can be an important link between intra- and extracerebral cholesterol homeostasis. Not surprisingly, changes in cholesterol metabolism occur simultaneously in the liver and nervous tissues and may be considered possible biomarkers of the liver and nervous system aging.