Research Paper Volume 14, Issue 3 pp 1292—1306
Effect of visfatin on KATP channel upregulation in colonic smooth muscle cells in diabetic colon dysmotility
- 1 Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- 2 Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210029, Jiangsu Province, China
Received: July 7, 2021 Accepted: January 4, 2022 Published: February 3, 2022
https://doi.org/10.18632/aging.203871How to Cite
Copyright: © 2022 Yu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
The mechanisms of diabetes-related gastrointestinal dysmotility remains unclear. This study aimed to investigate the effect and mechanisms of proinflammatory adipokine visfatin (VF) in the contractile dysfunction of diabetic rat colonic smooth muscle. Twenty Sprague-Dawley rats were randomly divided into control and type 2 diabetes mellitus groups. VF levels in the serum and colonic muscle tissues were tested, the time of the bead ejection and contractility of colonic smooth muscle strips were measured, and the expression of ATP-sensitive potassium (KATP) channels in the colonic muscle tissues was analyzed. In vitro, we tested VF’s effects on intracellular reactive oxygen species (ROS) levels, NF-κB’s nuclear transcription, KATP channel expression, intracellular Ca2+ concentrations, and myosin light chain (MLC) phosphorylation in colonic smooth muscle cells (CSMCs). The effects of NAC (ROS inhibitor) and BAY 11-7082 (NF-κB inhibitor) on KATP expression were also tested. Diabetic rats showed elevated VF levels in serum and colonic muscle tissues, a delayed distal colon ejection response time, weakened contractility of colonic smooth muscle strips, and increased KATP channel expression in colonic muscle tissues. VF significantly inhibited the contractility of colonic smooth muscle strips from normal rats. In cultured CSMCs, VF caused ROS overload, increased NF-κB nuclear transcription activity and increased expression of Kir6.1, eventually reducing intracellular Ca2+ levels and MLC phosphorylation. NAC and BAY 11-7082 inhibited the VF–induced Kir6.1 upregulation. In conclusion, VF may cause contractile dysfunction of CSMCs by upregulating the expression of the Kir6.1 subunit of KATP channels via the ROS/NF-κB pathway and interfering with Ca2+ signaling.