Research Paper Volume 13, Issue 21 pp 24219—24235
Construction and external validation of a 5-gene random forest model to diagnose non-obstructive azoospermia based on the single-cell RNA sequencing of testicular tissue
- 1 Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- 2 The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
Received: August 17, 2021 Accepted: October 28, 2021 Published: November 4, 2021
https://doi.org/10.18632/aging.203675How to Cite
Copyright: © 2021 Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Non-obstructive azoospermia (NOA) is among the most severe factors for male infertility, but our understandings of the latent biological mechanisms remain insufficient. The single-cell RNA sequencing (scRNA-seq) data of 432 testicular cells isolated from the patient with NOA was analyzed, and the cell samples were grouped into 5 cell clusters. A sum of 455 cell markers was identified and then included in the protein-protein interaction network. The Top 5 most critical genes in the network, including CCT8, CDC6, PSMD1, RPS4X, RPL36A, were selected for the diagnosis model construction through the random forest (RF). The RF model was a strong classifier for NOA and obstructive azoospermia (OA), which was validated in the training cohort (n = 58, AUC = 1) and external validation cohort (n = 20, AUC = 0.9). We collected the seminal plasma samples and testicular biopsy samples from 20 OA and 20 NOA cases from the local hospital, and the gene expression was detected via Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) and Immunohistochemistry. The RF model also exhibited high accuracy (AUC = 0.725) in the local cohort. In summary, a novel gene signature was developed and externally validated based on scRNA-seq analysis, providing some new biomarkers to uncover the underlying mechanisms and a promising clinical tool for diagnosis in NOA.