Research Paper Volume 13, Issue 19 pp 23210—23232
Integrated analysis of tumor-associated macrophage infiltration and prognosis in ovarian cancer
- 1 Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha, Hunan, China
- 2 Department of Nephrology, Xiangya Hospital Central South University, Changsha, Hunan, China
Received: June 18, 2021 Accepted: September 28, 2021 Published: October 11, 2021
https://doi.org/10.18632/aging.203613How to Cite
Copyright: © 2021 Tan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Ovarian cancer (OC) is a frequently lethal gynecologic malignancy, characterized by a poor prognosis and high recurrence rate. The immune microenvironment has been implicated in the progression of OC. We characterized the immune landscape in primary and malignant OC ascites using single-cell and bulk transcriptome raw OC data acquired from the Gene Expression Omnibus and The Cancer Genome Atlas databases. We then used the CIBERSORT deconvolution algorithm, weighted gene co-expression network analysis, univariate and multivariate Cox analyses, and the LASSO algorithm to develop a tumor-associated macrophage-related gene (TAMRG) prognostic signature, which enabled us to stratify and predict overall survival (OS) of OC patients. In addition, inter- and intra-patient heterogeneity of infiltrating immune cells was characterized at single-cell resolution. Tumor-infiltrating macrophages with an M2 phenotype exhibited immunosuppressive activity. M1 macrophages positively correlated with OS, whereas activated mast cells, neutrophils, M2 macrophages, and activated memory CD4+ T cells were all negatively correlated with OS. A total of 219 TAMRGs were identified, and a novel 6-gene signature (TAP1, CD163, VSIG4, IGKV4-1, CD3E, and MS4A7) with independent prognostic value was established. These results show that a TAMRG-based signature may be a promising prognostic and therapeutic target in OC.