Research Paper Volume 13, Issue 1 pp 933—943
IRF-1 contributes to the pathological phenotype of VSMCs during atherogenesis by increasing CCL19 transcription
- 1 Department of Vascular Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- 2 Department of Plastic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
Received: June 8, 2020 Accepted: September 20, 2020 Published: November 16, 2020
https://doi.org/10.18632/aging.202204How to Cite
Copyright: © 2020 Shen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that mainly involves the large and middle arteries, but the specific mechanism is not precise. Chemokine ligand 19 (CCL19) has been reported highly expressed in peripheral blood of patients with atherosclerosis, but its role lacks explicit data. By ELISA assay and immunohistochemical (IHC) analysis, we found that the CCL19 was significantly up-regulated in AS. Therefore, we tried to clarify whether CCL19 expression was related to the progression of AS. QRT-PCR and western blot demonstrated that overexpression of CCL19 promoted the secretion of inflammatory factors and the deposition of the extracellular matrix, and facilitated the proliferation and migration of VSMCS. Besides, knockdown of CCL19 reduced the inflammation, collagen secretion, proliferation and migration of VSMCS induced by PGDF-BB. The results of database analysis, chromatin immunoprecipitation (ChIP) and luciferase assay showed that interferon regulatory factor 1 (IRF-1) activated the expression of CCL19 at the transcriptional level. Importantly, silencing IRF-1 inhibited atherosclerosis in high-fat-fed mice, inhibited the proliferation and migration of VSMCS, and down-regulated the expression of CCL19. Summing up, the results demonstrated that IRF-1 contributed to the pathological phenotype of VSMCs during atherogenesis by increasing CCL19 transcription.