Abstract

Among all diabetes mellitus-associated cardiovascular diseases, morbidity of diabetic myocardium with ischemia reperfusion injury (D-IRI) is increasing year by year. We aimed to discover a therapeutic biomarker and investigate its mechanism in D-IRI. High-fat diet and streptozotocin-induced diabetes rats were operated with IRI or sham. Recombined lentiviral vector encoding Apelin was injected into D-IRI rat via tail vein. Cardiac function, infarct size, cellular death and oxidative stress were major outcome measures. Cardiomyocyte ischemia reperfusion injury was more serious in D-IRI rats than in non-diabetes ischemia reperfusion injury (ND-IRI) rats. The secretion of NTproBNP was increased in D-IRI compared with ND-IRI. Bcl-2 expression was decreased, and Bax and cleaved caspase-3 expression was increased in D-IRI rats compared with ND-IRI rats, which were reversed after treatment with Apelin. Apelin-upregulation improved cardiomyocyte ischemia reperfusion injury and decreased NT-proBNP levels in D-IRI rats. Apelin overexpression enhanced PI3K and eNOS levels while reduced those of p38-MAPK and iNOS in D-IRI rats. Apelin overexpression protected against D-IRI through inhibiting apoptosis and oxidative stress via PI3K and p38MAPK signaling pathways in D-IRI rats. These findings provide critical new insight into understanding of Apelin's cardio-protective effects, which may become a novel therapeutic target for the diabetic IRI patients.