Research Paper Volume 12, Issue 24 pp 25076—25089
Secondary data mining of GEO database for long non-coding RNA and Competing endogenous RNA network in keloid-prone individuals
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
Received: April 14, 2020 Accepted: August 25, 2020 Published: November 16, 2020
https://doi.org/10.18632/aging.104054How to Cite
Copyright: © 2020 Deng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
This study aimed to identify long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) differentially expressed (DE) during keloid formation, predict DElncRNA-DEmiRNA-DEmRNA interactions, and construct a competing endogenous RNA (ceRNA) network through secondary data mining of keloid-related sequencing and microarray data in the open-source Gene Expression Omnibus (GEO) database. The GSE113621 dataset was downloaded from the GEO database, |log2FC|>1 and p<0.05 were set as screening criteria, genes expressed only in keloid-prone individuals were selected as research objects, and DEmRNAs, DElncRNAs, and DEmiRNAs before injury and 6 weeks after injury were screened. A Pearson correlation coefficient (PCC) of > 0.95 was selected as the index to predict the targeting relationships among lncRNAs, miRNAs, and mRNAs; and a network diagram was constructed using Cytoscape. The expression of 2356 lncRNAs was changed in the keloid-prone group—1306 were upregulated and 1050 were downregulated. Six lncRNAs, namely, 2 upregulated (DLEU2 and AP000317.2) and 4 downregulated (ADIRF-AS1, AC006333.2, AL137127.1 and LINC01725) lncRNAs, were expressed only in the keloid-prone group and were used to construct a ceRNA network. DLEU2 may regulate fibroblast proliferation, differentiation, and apoptosis through hsa-miR-30a-5p/hsa-miR-30b-5p. In-depth mining of GEO data indicated that lncRNAs and a ceRNA regulatory network participate in the wound healing process in keloid-prone individuals, possibly providing novel intervention targets and treatment options for keloid scars.