Research Paper Volume 12, Issue 13 pp 13488—13501
TRIM29 mediates lung squamous cell carcinoma cell metastasis by regulating autophagic degradation of E-cadherin
- 1 Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, P.R. China
- 2 Department of Cell Biology, Southern Medical University, Guangzhou 510515, Guangdong, China
Received: December 21, 2019 Accepted: May 1, 2020 Published: July 8, 2020
https://doi.org/10.18632/aging.103451How to Cite
Copyright © 2020 Xu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Lung squamous cell carcinoma (LSCC) is the most common histological type of primary lung cancer. In this study, we had tested the biological role of TRIM29 in LSCC cells. TRIM29 abundance, the relationships between TRIM29 and E-cadherin and autophagy degradation related proteins in clinical tissues and six cell lines were studied with quantitative real-time PCR test (qRT-PCR) and western blot. TRIM29 overexpression treated HTB-182 cells and knockdown treated NCL-H1915 cells was used for studying cell proliferation, colony formation, migration, invasion, and the expression of epithelial mesenchymal transformation (EMT) associated biomarkers. The relationships between TRIM29 and BECN1 were investigated with western blot. TRIM29 was profoundly overexpressed in LSCC tissues and cells compared with human normal bronchial epithelial cells (HNBE). High TRIM29 expression was closely related to overall survival (OS). TRIM29 overexpression and knockdown affected LSCC activity and the expression of EMT associated biomarkers. TRIM29 can regulate the degradation of E-cadherin and autophagy of LSCC through BECN1 gene, and promote autophagy in HTB-182 and NCL-H1915 cells. Our results revealed that TRIM29 could promote the proliferation, migration, and invasion of LSCC via E-cadherin autophagy degradation. The results are useful for further study in LSCC.