Research Paper Volume 12, Issue 8 pp 7334—7349
A novel dipeptide from potato protein hydrolysate augments the effects of exercise training against high-fat diet-induced damages in senescence-accelerated mouse-prone 8 by boosting pAMPK / SIRT1/ PGC-1α/ pFOXO3 pathway
- 1 Cardiovascular and Mitochondria Related Disease Research Center, Buddhist Tzu Chi Hospital, Hualien, Taiwan
- 2 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- 3 Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan
- 4 Department of Food and Nutrition, Providence University, Taichung, Taiwan
- 5 Department of Senior Wellness and Sport Science, College of Agriculture, Tunghai University, Taichung, Taiwan
Received: September 10, 2019 Accepted: March 29, 2020 Published: April 26, 2020
https://doi.org/10.18632/aging.103081How to Cite
Copyright © 2020 Asokan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
The pathological effects of obesity are often severe in aging condition. Although exercise training is found to be advantageous, the intensity of exercise performed is limited in aging condition. Therefore in this study we assessed the effect of a combined treatment regimen with a short-peptide IF isolated from alcalase potato-protein hydrolysates and a moderate exercise training for 15 weeks in a 6 month old HFD induced obese senescence accelerated mouse-prone 8 (SAMP8) mice model. Animals were divided into 6 groups (n=6) (C:Control+BSA); (HF:HFD+BSA); (EX:Control+ BSA+Exercise); (HF+IF:HFD+ IF); (HF+EX:HFD+Exercise); (HF+EX+IF:HFD+Exercise+IF). A moderate incremental swimming exercise training was provided for 6 weeks and after 3 weeks of exercise, IF was orally administered (1 mg/kg body Weight). The results show that combined administration of IF and exercise provides a better protection to aging animals by reducing body weight and regulated tissue damage. IF intake and exercise training provided protection against cardiac hypertrophy and maintains the tissue homeostasis in the heart and liver sections. Interestingly, IF and exercise training showed an effective upregulation in pAMPK/ SIRT1/ PGC-1α/ pFOXO3 mechanism of cellular longevity. Therefore, exercise training with IF intake is a possible strategy for anti-obesity benefits and superior cardiac and hepatic protection in aging condition.