Abstract

Ubiquitin-specific protease 22 (USP22) expresses highly in lung adenocarcinoma (LUAD), which are associated with poor overall survival (OS). Microarray processing was performed to determine gene expression profiling, in which it was found that knocking down USP22 resulted in abnormal expression of a large number of genes. Differentially expressed genes (DEGs)-based protein-protein interaction (PPI) network was organized into 9 functional modules. These functional modules participated significantly in protein modification-related biological process and were involved in cancer-related pathways. The network was constructed to describe the global regulation of USP22-TF/pivot-module-pathway. It suggested that knocking down USP22 may up-regulate the expression of UBC to promote the pathways of cell cycle and ubiquitin-mediated proteolysis in the development of LUAD. More than that, knocking down USP22 can up-regulate STAT1 to activate JAK1-STAT1-caspase pathway, and promote apoptosis of tumor cell. Receiver operating characteristic (ROC) curve analysis suggested that E2F3, H2AFX, TFAP2A, PITX1, IRF7, and FOXM1 may be the potential diagnosis biomarkers for LUAD. On the other hand, BRCA1, FOXM1 and TFAP2A may be prognostic biomarkers of LUAD. In conclusion, we constructed a global regulation network to show that USP22 may promote the development of LUAD through ubiquitination and immunosuppression.