Research Paper Volume 12, Issue 8 pp 6667—6679
Ultraconserved element uc.333 increases insulin sensitivity by binding to miR-223
- 1 Peking University Fifth School of Clinical Medicine, Beijing, China
- 2 The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
Received: November 25, 2019 Accepted: March 3, 2020 Published: April 17, 2020
https://doi.org/10.18632/aging.103020How to Cite
Copyright © 2020 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Insulin resistance (IR) contributes to diabetes and aging. Ultraconserved elements (UCEs) are a class of long noncoding RNAs (lncRNAs) that are 100% conserved in humans, mice, and rats. We identified the lncRNA uc.333 using an lncRNA microarray and then used quantitative real-time polymerase chain reaction to analyze its expression in the livers of nonalcoholic fatty liver disease (NAFLD) patients, db/db mice, high-fat diet–fed mice, IL-6-treated mice, and TNF-α-treated mice. The underlying mechanisms of uc.333 in IR were investigated using fluorescence in situ hybridization, Western blot, and miRNA microarray analyses. The results revealed that uc.333 expression was decreased in liver tissues from NAFLD patients and treated mice. Furthermore, overexpression of uc.333 decreased IR, whereas knocking down uc.333 increased IR. We also confirmed that uc.333 binds to miR-223 and that the levels of miR-223 were increased in the livers of patients and treated mice. These findings showed that uc.333 improves IR by binding to miR-223; thus, uc.333 may be a useful target for the treatment and prevention of IR.