Research Paper Volume 12, Issue 4 pp 3175—3189
Ligustilide improves aging-induced memory deficit by regulating mitochondrial related inflammation in SAMP8 mice
- 1 Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- 2 Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- 3 Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
Received: September 27, 2019 Accepted: January 12, 2020 Published: February 16, 2020
https://doi.org/10.18632/aging.102793How to Cite
Copyright © 2020 Zhu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease. The main active component in Angelica sinensis, ligustilide, has been reported to have the protective effect on AD. Whether ligustilide could protect against age-induced dementia is still unknown. In this study, we used an aging model, SAMP8 mice to investigate the neuroprotective effect of ligustilide. The behavioral tests (Morris water maze, object recognition task, open field test and elevated plus maze) results showed that ligustilide could improve the memory deficit in SAMP8 mice. For mechanism study, we found that the protein level of P-Drp1 (fission) was decreased and the levels of Mfn1 and Mfn2 (fusion) were increased after ligustilide treatment in animals and cells. Ligustilide increased P-AMPK and ATP levels. Malondialdehyde and superoxide dismutase activity results indicated that ligustilide exerts antioxidant effects by reducing the level of oxidative stress markers. In addition, ligustilide improved neural function and alieved apoptosis and neuroinflammation. These findings have shown that ligustilide treatment improves mitochondrial function in SAMP8 mice, and improves memory loss.