Abstract

Purpose: To develop a decision tree algorithm-based classification system for personalized management of hepatocellular carcinoma (HCC) patients with macroscopic vascular invasion.

Results: The HVTT-PVTT score could differentiate two groups of patients (< 3 and ≥ 3 points) with different survival outcomes (7.4 vs 4.6 months, P < 0.001) and surgical proportion (24.4% vs 3.6%, P < 0.001). Using the Cox regression model and classification and regression tree (CART) algorithm, patients in the training set were automatically separated into three subgroups with different prognosis (10.3 vs 6.1 vs 3.3 months). The predictive accuracy was verified in the validation group (12.3 vs 6.9 vs 5.6 months) and was better than other commonly used staging systems.

Conclusions: Our study proposed a new classification system for HCC patients with macroscopic vascular invasion that could be meaningful for personalized management of these patients.

Methods: A total of 869 HCC patients initially diagnosed with macroscopic vascular invasion were randomly divided into training and validation sets. A comprehensive and simplified HVTT-PVTT score was set up for subdivision of vascular invasion according to the patients’ survival outcome. Then, a decision tree algorithm-based classification system was used to establish the refined subdivision system incorporating all independent prognostic factors.