Research Paper Volume 11, Issue 21 pp 9264—9279
Dopaminergic neuron injury in Parkinson’s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/ α-synuclein pathway
- 1 Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
Received: June 27, 2019 Accepted: September 22, 2019 Published: November 4, 2019
https://doi.org/10.18632/aging.102330How to Cite
Copyright © 2019 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
This study explored the influence of long non-coding RNA (lncRNA) SNHG14 on α-synuclein (α-syn) expression and Parkinson’s disease (PD) pathogenesis. Firstly, we found that the expression level of SNHG14 was elevated in brain tissues of PD mice. In MN9D cells, the rotenone treatment (1μmol/L) enhanced the binding between transcriptional factor SP-1 and SNHG14 promoter, thus promoting SNHG14 expression. Interference of SNHG14 ameliorated the DA neuron injury induced by rotenone. Next, we found an interaction between SNHG14 and miR-133b. Further study showed that miR-133b down-regulated α-syn expression by targeting its 3’-UTR of mRNA and SNHG14 could reverse the negative effect of miR-133b on α-syn expression. Interference of SNHG14 reduced rotenone-induced DA neuron damage through miR-133b in MN9D cells and α-syn was responsible for the protective effect of miR-133b. Similarly, interference of SNHG14 mitigated neuron injury in PD mouse model. All in all, silence of SNHG14 mitigates dopaminergic neuron injury by down-regulating α-syn via targeting miR-133b, which contributes to improving PD.