Research Paper Volume 10, Issue 11 pp 3558—3573
Myoblasts rely on TAp63 to control basal mitochondria respiration
- 1 Department of Experimental Medicine and TOR, University of Rome “Tor Vergata”, Rome, Italy
- 2 MRC-Toxicology Unit, University of Cambridge, Cambridge, UK
- 3 IDI-IRCCS, Biochemistry laboratory, Rome, Italy
Received: October 3, 2018 Accepted: November 15, 2018 Published: November 28, 2018
https://doi.org/10.18632/aging.101668How to Cite
Abstract
p53, with its family members p63 and p73, have been shown to promote myoblast differentiation by regulation of the function of the retinoblastoma protein and by direct activation of p21Cip/Waf1 and p57Kip2, promoting cell cycle exit. In previous studies, we have demonstrated that the TAp63γ isoform is the only member of the p53 family that accumulates during in vitro myoblasts differentiation, and that its silencing led to delay in myotube fusion. To better dissect the role of TAp63γ in myoblast physiology, we have generated both sh-p63 and Tet-On inducible TAp63γ clones. Gene array analysis of sh-p63 C2C7 clones showed a significant modulation of genes involved in proliferation and cellular metabolism. Indeed, we found that sh-p63 C2C7 myoblasts present a higher proliferation rate and that, conversely, TAp63γ ectopic expression decreases myoblasts proliferation, indicating that TAp63γ specifically contributes to myoblasts proliferation, independently of p53 and p73. In addition, sh-p63 cells have a defect in mitochondria respiration highlighted by a reduction in spare respiratory capacity and a decrease in complex I, IV protein levels. These results demonstrated that, beside contributing to cell cycle exit, TAp63γ participates to myoblasts metabolism control.