Research Paper Volume 10, Issue 4 pp 532—548
A net-shaped multicellular formation facilitates the maturation of hPSC-derived cardiomyocytes through mechanical and electrophysiological stimuli
- 1 Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing 100029, China
- 2 Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
- 3 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- 4 Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China
Received: February 4, 2020 Accepted: April 9, 2018 Published: April 14, 2018
https://doi.org/10.18632/aging.101411How to Cite
Abstract
The use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is limited in drug discovery and cardiac disease mechanism studies due to cell immaturity. Although many approaches have been reported to improve the maturation of hiPSC-CMs, the elucidation of the process of maturation is crucial. We applied a small-molecule-based differentiation method to generate cardiomyocytes (CMs) with multiple aggregation forms. The motion analysis revealed significant physical differences in the differently shaped CMs, and the net-shaped CMs had larger motion amplitudes and faster velocities than the sheet-shaped CMs. The net-shaped CMs displayed accelerated maturation at the transcriptional level and were more similar to CMs with a prolonged culture time (30 days) than to sheet-d15. Ion channel genes and gap junction proteins were up-regulated in net-shaped CMs, indicating that robust contraction was coupled with enhanced ion channel and connexin expression. The net-shaped CMs also displayed improved myofibril ultrastructure under transmission electron microscopy. In conclusion, different multicellular hPSC-CM structures, such as the net-shaped pattern, are formed using the conditioned induction method, providing a useful tool to improve cardiac maturation.
Abbreviations
CM: cardiomyocyte; hiPSC: human induced-pluripotent stem cell; HCM: hypertrophic cardiomyopathy; DCM: dilated cardiomyopathy; LQT: long QT syndrome; cTnI: cardiac troponin I; cTnT: cardiac troponin T; CX43: connexin-43; DAPI: 4,6-diamidino-2-phenylindole; qRT-PCR: quantitative real-time polymerase chain reaction; MHMA: maximum horizontal motion amplitude; MLMA: maximum longitudinal motion amplitude; MV: maximum velocity; MHV: maximum horizontal velocity; MLV: maximum longitudinal velocity; LRRC39: leucine-rich repeat-containing protein 39; SEARCA2: sarco/endoplasmic reticulum Ca2+ ATPase RYR2: ryanodine receptor 2; ECM: extracellular matrix; EDTA: ethylenediaminetetraacetic acid; GFP: green fluorescent protein; BSA: bovine serum albumin; PBS: phosphate-buffered saline.